Display options
Share it on

Intensive Care Med Exp. 2016 Dec;4(1):3. doi: 10.1186/s40635-016-0077-2. Epub 2016 Jan 20.

A technique for continuous bedside monitoring of global cerebral energy state.

Intensive care medicine experimental

Rasmus Jakobsen, Troels Halfeld Nielsen, Asger Granfeldt, Palle Toft, Carl-Henrik Nordström

Affiliations

  1. Department of Anaesthesia and Intensive care, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark. [email protected].
  2. Department of Neurosurgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark. [email protected].
  3. Department of Anesthesiology, Regional Hospital of Randers, Skovlyvej 1, 8930, Randers NØ, Denmark. [email protected].
  4. Department of Anaesthesia and Intensive care, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark. [email protected].
  5. Department of Neurosurgery, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark. [email protected].

PMID: 26791144 PMCID: PMC4720625 DOI: 10.1186/s40635-016-0077-2

Abstract

BACKGROUND: Cerebral cytoplasmatic redox state is a sensitive indicator of cerebral oxidative metabolism and is conventionally evaluated from the extracellular lactate/pyruvate (LP) ratio. In the present experimental study of global cerebral ischemia induced by hemorrhagic shock, we investigate whether the LP ratio obtained from microdialysis of cerebral venous blood may be used as a surrogate marker of global cerebral energy state.

METHODS: Six female pigs were anesthetized and vital parameters were recorded. Microdialysis catheters were placed in the left parietal lobe, the superior sagittal sinus, and the femoral artery. Hemorrhagic shock was achieved by bleeding the animals to a mean arterial pressure (MAP) of approximately 40 mmHg and kept at a MAP of about 30-40 mmHg for 90 min. The animals were resuscitated with autologous whole blood followed by 3 h of observation.

RESULTS: The LP ratio obtained from the intracerebral and intravenous catheters immediately increased during the period of hemorrhagic shock while the LP ratio in the arterial blood remained close to normal levels. At the end of the experiment, median LP ratio (interquartile range) obtained from the intracerebral, intravenous, and intra-arterial microdialysis catheters were 846 (243-1990), 309 (103-488), and 27 (21-31), respectively. There was a significant difference in the LP ratio obtained from the intravenous location and the intra-arterial location (P < 0.001).

CONCLUSIONS: During cerebral ischemia induced by severe hemorrhagic shock, intravascular microdialysis of the draining venous blood will exhibit changes of the LP ratio revealing the deterioration of global cerebral oxidative energy metabolism. In neurocritical care, this technique might be used to give information regarding global cerebral energy metabolism in addition to the regional information obtained from intracerebral microdialysis catheters. The technique might also be used to evaluate cerebral energy state in various critical care conditions when insertion of an intracerebral microdialysis catheter may be contraindicated, e.g., resuscitation after cardiac standstill, open-heart surgery, and multi-trauma.

Keywords: Cerebral energy state; Hemorrhagic shock; Ischemia; Microdialysis

References

  1. Metab Brain Dis. 2001 Jun;16(1-2):67-78 - PubMed
  2. Anaesthesia. 2012 Mar;67(3):280-93 - PubMed
  3. J Cereb Blood Flow Metab. 2005 Jun;25(6):763-74 - PubMed
  4. Childs Nerv Syst. 2010 Apr;26(4):465-72 - PubMed
  5. J Cereb Blood Flow Metab. 2014 Nov;34(11):1736-48 - PubMed
  6. Resuscitation. 2012 Jan;83(1):11-2 - PubMed
  7. J Pharm Sci. 2003 Aug;92(8):1531-44 - PubMed
  8. J Neurol Neurosurg Psychiatry. 1998 Apr;64(4):486-91 - PubMed
  9. J Neurosci. 2010 Oct 20;30(42):13983-91 - PubMed
  10. Intensive Care Med. 2014 Dec;40(12):1795-815 - PubMed
  11. Eur J Cardiothorac Surg. 2008 Jun;33(6):961-70 - PubMed
  12. J Hepatol. 2010 Dec;53(6):1054-8 - PubMed
  13. Acta Neurol Scand. 2014 Sep;130(3):156-63 - PubMed
  14. Resuscitation. 2014 Apr;85(4):522-6 - PubMed
  15. Crit Care Med. 2010 Mar;38(3):928-32 - PubMed
  16. J Thorac Cardiovasc Surg. 2011 Aug;142(2):e11-7 - PubMed
  17. Acad Radiol. 2014 Feb;21(2):175-84 - PubMed
  18. Crit Care Med. 2012 Nov;40(11):3013-25 - PubMed
  19. N Engl J Med. 2012 Jan 19;366(3):250-7 - PubMed
  20. Intensive Care Med. 2004 Dec;30(12):2166-9 - PubMed
  21. Acta Anaesthesiol Scand. 2013 Jul;57(6):793-801 - PubMed
  22. J Anesth. 2014 Apr;28(2):242-8 - PubMed
  23. Crit Care. 2014 Mar 31;18(2):R56 - PubMed
  24. J Cereb Blood Flow Metab. 2007 Jul;27(7):1309-17 - PubMed
  25. Nat Rev Neurosci. 2002 Sep;3(9):748-55 - PubMed
  26. IUBMB Life. 2012 Jan;64(1):1-9 - PubMed
  27. J Cereb Blood Flow Metab. 2012 Jul;32(7):1107-38 - PubMed
  28. J Intern Med. 1991 Oct;230(4):365-73 - PubMed
  29. Am J Physiol. 1988 Nov;255(5 Pt 1):E737-42 - PubMed
  30. J Neurochem. 2005 Jul;94(1):1-14 - PubMed
  31. IUBMB Life. 2012 Feb;64(2):109-19 - PubMed
  32. J Matern Fetal Neonatal Med. 2010 Feb;23(2):158-66 - PubMed
  33. Crit Care. 2013 Jan 15;17(1):201 - PubMed
  34. J Invest Surg. 2008 Nov-Dec;21(6):323-9 - PubMed
  35. Neurohospitalist. 2014 Jul;4(3):144-52 - PubMed
  36. Neurocrit Care. 2008;9(1):3-7 - PubMed
  37. Neurosurgery. 2000 Sep;47(3):701-9; discussion 709-10 - PubMed
  38. Am J Physiol. 1993 Apr;264(4 Pt 1):C761-82 - PubMed
  39. Acta Anaesthesiol Scand. 2009 Mar;53(3):289-98 - PubMed
  40. Neurocrit Care. 2014 Aug;21(1):35-42 - PubMed
  41. Resuscitation. 2013 Jul;84(7):867-72 - PubMed
  42. Crit Care Med. 2010 Mar;38(3):1008-9 - PubMed
  43. J Neurosurg. 2005 Mar;102(3):460-9 - PubMed

Publication Types