Display options
Share it on

Exp Hematol Oncol. 2016 Jan 28;5:2. doi: 10.1186/s40164-016-0032-7. eCollection 2015.

Identification of AIM2 as a downstream target of JAK2V617F.

Experimental hematology & oncology

Ei Leen Liew, Marito Araki, Yumi Hironaka, Seiichi Mori, Tuan Zea Tan, Soji Morishita, Yoko Edahiro, Akimichi Ohsaka, Norio Komatsu

Affiliations

  1. Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan ; Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Shiga, Japan.
  2. Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
  3. Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan.
  4. Division of Cancer Genomics, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan.
  5. Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore.

PMID: 26823993 PMCID: PMC4730608 DOI: 10.1186/s40164-016-0032-7

Abstract

BACKGROUND: The gain-of-function mutation JAK2V617F is frequently found in Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) patients. However, the tumorigenic properties of JAK2V617F have mostly been characterized in in vivo and in vitro murine models due to the lack of appropriate human cell lines.

METHODS: Using the multipotent hematologic cell line UT-7/GM, we established D9, a novel human cell line that expresses JAK2V617F upon tetracycline addition. We assessed cellular differentiation in UT-7/GM cells when JAK2V617F was induced, and we used microarrays to analyze changes in mRNA expression caused by JAK2V617F.

RESULTS: Using the human D9 cell line, we demonstrated that the induction of JAK2V617F leads to cytokine-independent cell growth with increased STAT activation and erythroid differentiation, mimicking the characteristics observed in polycythemia vera, making it a suitable in vitro model for studying this disorder. Interestingly, JAK2V617F-dependent erythroid cell differentiation was blocked when GM-CSF was added to the culture, suggesting that the GM-CSF pathway antagonizes JAK2V617F-induced erythroid cell differentiation. Our microarray analysis identified several genes involved in inflammasome activation, such as AIM2, IL1B, and CASP1, which were significantly up-regulated in JAK2V617F-induced cells.

CONCLUSIONS: The observed inflammasome activation following JAK2V617F induction is consistent with a recent report demonstrating the involvement of IL1B in myelofibrosis development in a JAK2V617F model mouse. These results indicate that the D9 cell line should be useful for characterizing the signaling pathways downstream of JAK2V617F, allowing for the identification of effector molecules that contribute to the development of MPN.

Keywords: AIM2; Essential thrombocythemia; IL1B; JAK2V617F; Myeloproliferative neoplasms; Polycythemia vera; Primary myelofibrosis

References

  1. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  2. Blood. 1997 Jun 1;89(11):4021-33 - PubMed
  3. J Hematol Oncol. 2015 Jul 26;8:91 - PubMed
  4. Blood. 2010 Apr 29;115(17):3589-97 - PubMed
  5. J Hematol Oncol. 2014 Dec 12;7:93 - PubMed
  6. Am J Hematol. 2014 May;89(5):517-23 - PubMed
  7. Biometrics. 2003 Mar;59(1):133-42 - PubMed
  8. Int J Hematol. 2015 Feb;101(2):148-53 - PubMed
  9. Exp Hematol Oncol. 2014 Feb 17;3(1):6 - PubMed
  10. PLoS One. 2013;8(2):e57633 - PubMed
  11. J Clin Invest. 2013 Jan;123(1):517-25 - PubMed
  12. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18962-7 - PubMed
  13. Science. 1982 Jun 11;216(4551):1233-5 - PubMed
  14. Nature. 2014 Aug 7;512(7512):78-81 - PubMed
  15. Leukemia. 2008 Jul;22(7):1299-307 - PubMed
  16. Cancer Res. 1991 Jan 1;51(1):341-8 - PubMed
  17. Int J Hematol. 2010 Mar;91(2):165-73 - PubMed
  18. Blood Cancer J. 2011 Nov;1(11):e40 - PubMed
  19. Blood. 2010 Sep 2;116(9):1392-3 - PubMed
  20. Nat Immunol. 2010 May;11(5):385-93 - PubMed
  21. Leukemia. 2007 Sep;21(9):1952-9 - PubMed
  22. Nat Immunol. 2009 Mar;10(3):266-72 - PubMed
  23. J Biol Chem. 2001 May 4;276(18):15082-9 - PubMed
  24. Leukemia. 2013 Sep;27(9):1870-3 - PubMed
  25. Exp Hematol Oncol. 2015 Sep 15;4:26 - PubMed
  26. N Engl J Med. 2005 Apr 28;352(17):1779-90 - PubMed
  27. Int J Hematol. 2014;99(5):625-34 - PubMed
  28. Mediators Inflamm. 2015;2015:670580 - PubMed
  29. Nat Rev Cancer. 2007 Sep;7(9):673-83 - PubMed
  30. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6224-9 - PubMed
  31. N Engl J Med. 2013 May 9;368(19):1781-90 - PubMed
  32. Leukemia. 2000 Jan;14(1):142-52 - PubMed
  33. Nature. 2005 Apr 28;434(7037):1144-8 - PubMed
  34. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 - PubMed
  35. Haematologica. 2015 Feb;100(2):e46-8 - PubMed
  36. Haematologica. 2009 Jan;94(1):7-10 - PubMed
  37. Oncogene. 2009 Aug 27;28(34):3069-80 - PubMed

Publication Types