Display options
Share it on

Sci Adv. 2015 Dec 18;1(11):e1500421. doi: 10.1126/sciadv.1500421. eCollection 2015 Dec.

A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification.

Science advances

Shyamapada Nandi, Phil De Luna, Thomas D Daff, Jens Rother, Ming Liu, William Buchanan, Ayman I Hawari, Tom K Woo, Ramanathan Vaidhyanathan

Affiliations

  1. Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India.
  2. Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
  3. Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany.
  4. Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USA.
  5. Enovex Technology Corporation, Saint John, New Brunswick E2L 2E9, Canada.
  6. Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India.; Enovex Technology Corporation, Saint John, New Brunswick E2L 2E9, Canada.

PMID: 26824055 PMCID: PMC4730842 DOI: 10.1126/sciadv.1500421

Abstract

Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10(-9) m(2)/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams.

Keywords: CO2 self-diffusivity; Hydrogen purification; Metal Organic Framework; Single-ligand MOF; Ultra-microporous; mixed-gas adsorption simulation; positron annihilation lifetime spectroscopy of MOF; pre-combustion CO2 capture

References

  1. Science. 2013 Aug 30;341(6149):1230444 - PubMed
  2. Langmuir. 2011 May 17;27(10):6368-73 - PubMed
  3. Angew Chem Int Ed Engl. 2015 Jan 2;54(1):221-6 - PubMed
  4. Nat Commun. 2012 Jan 24;3:642 - PubMed
  5. Nat Commun. 2012 Jul 17;3:954 - PubMed
  6. Sci Rep. 2013 Oct 10;3:2916 - PubMed
  7. J Am Chem Soc. 2011 Apr 20;133(15):5664-7 - PubMed
  8. Adv Mater. 2010 Apr 12;22(14):1598-601 - PubMed
  9. J Am Chem Soc. 2009 Jul 8;131(26):9186-8 - PubMed
  10. Angew Chem Int Ed Engl. 2015 Jan 2;54(1):149-54 - PubMed
  11. Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1826-9 - PubMed
  12. Angew Chem Int Ed Engl. 2009;48(44):8335-9 - PubMed
  13. Energy Fuels. 2014 Feb 20;28(2):1028-1040 - PubMed
  14. J Am Chem Soc. 2009 Dec 9;131(48):17546-7 - PubMed
  15. Chem Soc Rev. 2014 Aug 21;43(16):5415-8 - PubMed
  16. Angew Chem Int Ed Engl. 2007;46(5):795-8 - PubMed
  17. Science. 2010 Oct 29;330(6004):650-3 - PubMed
  18. J Am Chem Soc. 2008 Oct 22;130(42):13850-1 - PubMed
  19. Nat Mater. 2012 Jun 03;11(8):710-6 - PubMed
  20. Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6058-82 - PubMed
  21. J Am Chem Soc. 2006 Jul 12;128(27):8904-13 - PubMed
  22. Environ Sci Technol. 2010 Mar 1;44(5):1820-6 - PubMed
  23. Nat Chem. 2012 Oct;4(10):810-6 - PubMed
  24. Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10316-20 - PubMed
  25. Inorg Chem. 2009 Jul 20;48(14):6860-72 - PubMed
  26. Nature. 2013 Mar 7;495(7439):80-4 - PubMed

Publication Types