Display options
Share it on

Sci Adv. 2015 Dec 18;1(11):e1501095. doi: 10.1126/sciadv.1501095. eCollection 2015 Dec.

Active quantum plasmonics.

Science advances

Dana Codruta Marinica, Mario Zapata, Peter Nordlander, Andrey K Kazansky, Pedro M Echenique, Javier Aizpurua, Andrei G Borisov

Affiliations

  1. Institut des Sciences Moléculaires d'Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France.
  2. Institut des Sciences Moléculaires d'Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France.; Materials Physics Center, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea and Donostia International Physics Center, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.; Departamento de Física, Universidad de los Andes, 111711 Bogotá, Colombia.
  3. MS61, Laboratory for Nanophotonics, Department of Physics, Rice University, Houston, TX 77005, USA.
  4. Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain.
  5. Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.
  6. Materials Physics Center, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea and Donostia International Physics Center, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.

PMID: 26824066 PMCID: PMC4730853 DOI: 10.1126/sciadv.1501095

Abstract

The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.

Keywords: Physics; Plasmonics; Quantum plasmonics; applied optoelectronics

References

  1. J Am Chem Soc. 2009 Oct 21;131(41):14664-6 - PubMed
  2. Science. 2014 Mar 28;343(6178):1496-9 - PubMed
  3. Chem Soc Rev. 2014 Jun 7;43(11):3898-907 - PubMed
  4. Nano Lett. 2014 Nov 12;14(11):6651-4 - PubMed
  5. Nano Lett. 2009 Feb;9(2):887-91 - PubMed
  6. Faraday Discuss. 2015;178:151-83 - PubMed
  7. J Chem Phys. 2004 Feb 15;120(7):3387-96 - PubMed
  8. Nano Lett. 2011 Aug 10;11(8):3370-7 - PubMed
  9. Nature. 2012 Nov 22;491(7425):574-7 - PubMed
  10. Opt Express. 2013 Nov 4;21(22):27306-25 - PubMed
  11. Adv Mater. 2011 Oct 11;23(38):4422-30 - PubMed
  12. Nano Lett. 2012 Mar 14;12(3):1333-9 - PubMed
  13. Phys Rev Lett. 1995 Feb 27;74(9):1558-1561 - PubMed
  14. Opt Express. 2013 Jan 28;21(2):1633-8 - PubMed
  15. Nano Lett. 2009 Feb;9(2):819-25 - PubMed
  16. J Chem Phys. 2005 Aug 8;123(6):62206 - PubMed
  17. Rep Prog Phys. 2012 Mar;75(3):036501 - PubMed
  18. Phys Rev Lett. 2015 Mar 27;114(12):126803 - PubMed
  19. Nano Lett. 2013;13(12):5873-9 - PubMed
  20. Science. 2005 Jun 10;308(5728):1607-9 - PubMed
  21. Nature. 2007 Nov 15;450(7168):402-6 - PubMed
  22. Nano Lett. 2013 Feb 13;13(2):564-9 - PubMed
  23. Nat Nanotechnol. 2010 Oct;5(10):732-6 - PubMed
  24. Nano Lett. 2015 May 13;15(5):3410-9 - PubMed
  25. Opt Express. 2015 Mar 23;23(6):8134-49 - PubMed
  26. Adv Mater. 2010 Dec 1;22(45):5173-7 - PubMed
  27. Nat Commun. 2012 May 08;3:825 - PubMed
  28. Chem Rev. 2006 Oct;106(10):4160-206 - PubMed
  29. Nat Mater. 2010 Mar;9(3):193-204 - PubMed
  30. Nano Lett. 2012 Mar 14;12(3):1247-52 - PubMed
  31. Nano Lett. 2010 Aug 11;10(8):3090-5 - PubMed
  32. Nano Lett. 2009 Jul;9(7):2671-5 - PubMed
  33. Nat Commun. 2014 Oct 14;5:5228 - PubMed
  34. Nat Mater. 2008 Jun;7(6):442-53 - PubMed
  35. Annu Rev Phys Chem. 2004;55:427-55 - PubMed
  36. Nano Lett. 2014 May 14;14(5):2330-8 - PubMed

Publication Types