Display options
Share it on

Front Neurosci. 2016 Jan 11;9:494. doi: 10.3389/fnins.2015.00494. eCollection 2015.

Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus.

Frontiers in neuroscience

Jagroop Dhaliwal, Yanwei Xi, Elodie Bruel-Jungerman, Johanne Germain, Fiona Francis, Diane C Lagace

Affiliations

  1. Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada.
  2. Institut National de la Santé et de la Recherche Médicale UMRS 839Paris, France; Sorbonne Universités, Université Pierre et Marie CurieParis, France; Institut du Fer à MoulinParis, France.
  3. Sorbonne Universités, Université Pierre et Marie CurieParis, France; Institut National de la Santé et de la Recherche Médicale UMRS 952Paris, France.

PMID: 26793044 PMCID: PMC4707254 DOI: 10.3389/fnins.2015.00494

Abstract

In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX.

Keywords: DCX knockdown; DCX knockout; adult neurogenesis; differentiation; doublecortin; retrovirus labeling; survival

References

  1. Nature. 2006 Feb 2;439(7076):589-93 - PubMed
  2. J Neurosci. 2010 Feb 24;30(8):3002-12 - PubMed
  3. J Neurosci. 2002 Sep 1;22(17):7548-57 - PubMed
  4. Neuron. 1999 Jun;23(2):257-71 - PubMed
  5. PLoS One. 2013 Sep 20;8(9):e74992 - PubMed
  6. PLoS One. 2013 May 07;8(5):e62693 - PubMed
  7. J Comp Neurol. 2003 Dec 1;467(1):1-10 - PubMed
  8. Front Cell Neurosci. 2014 Nov 27;8:396 - PubMed
  9. Front Neurosci. 2014 Apr 10;8:71 - PubMed
  10. Glia. 2006 Jul;54(1):21-34 - PubMed
  11. Neuron. 2006 Jan 5;49(1):55-66 - PubMed
  12. Prog Neurobiol. 2012 Jul;98(1):1-15 - PubMed
  13. Hum Mol Genet. 2006 May 1;15(9):1387-400 - PubMed
  14. J Neurosci. 2007 Oct 3;27(40):10906-11 - PubMed
  15. J Neurosci. 2011 May 18;31(20):7551-62 - PubMed
  16. PLoS Biol. 2008 Nov 11;6(11):e272 - PubMed
  17. J Neurosci Res. 2010 Feb 1;88(2):304-14 - PubMed
  18. J Neurosci. 2009 Jun 24;29(25):7966-77 - PubMed
  19. Neuron. 1999 Jun;23(2):247-56 - PubMed
  20. Nat Neurosci. 2003 Dec;6(12):1277-83 - PubMed
  21. Nat Neurosci. 2003 Dec;6(12):1245-7 - PubMed
  22. Neuron. 2014 Jun 18;82(6):1255-62 - PubMed
  23. Nature. 2006 Aug 24;442(7105):929-33 - PubMed
  24. J Comp Neurol. 2012 Sep 1;520(13):2805-23 - PubMed
  25. Hippocampus. 2016 Feb;26(2):211-9 - PubMed
  26. Nat Neurosci. 2006 Jun;9(6):779-86 - PubMed

Publication Types