Display options
Share it on

Front Physiol. 2016 Jan 11;6:414. doi: 10.3389/fphys.2015.00414. eCollection 2015.

Task Failure during Exercise to Exhaustion in Normoxia and Hypoxia Is Due to Reduced Muscle Activation Caused by Central Mechanisms While Muscle Metaboreflex Does Not Limit Performance.

Frontiers in physiology

Rafael Torres-Peralta, David Morales-Alamo, Miriam González-Izal, José Losa-Reyna, Ismael Pérez-Suárez, Mikel Izquierdo, José A L Calbet

Affiliations

  1. Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran Canaria, Spain.
  2. Department of Health Sciences, Public University of Navarra Tudela, Spain.

PMID: 26793117 PMCID: PMC4707284 DOI: 10.3389/fphys.2015.00414

Abstract

To determine whether task failure during incremental exercise to exhaustion (IE) is principally due to reduced neural drive and increased metaboreflex activation eleven men (22 ± 2 years) performed a 10 s control isokinetic sprint (IS; 80 rpm) after a short warm-up. This was immediately followed by an IE in normoxia (Nx, PIO2:143 mmHg) and hypoxia (Hyp, PIO2:73 mmHg) in random order, separated by a 120 min resting period. At exhaustion, the circulation of both legs was occluded instantaneously (300 mmHg) during 10 or 60 s to impede recovery and increase metaboreflex activation. This was immediately followed by an IS with open circulation. Electromyographic recordings were obtained from the vastus medialis and lateralis. Muscle biopsies and blood gases were obtained in separate experiments. During the last 10 s of the IE, pulmonary ventilation, VO2, power output and muscle activation were lower in hypoxia than in normoxia, while pedaling rate was similar. Compared to the control sprint, performance (IS-Wpeak) was reduced to a greater extent after the IE-Nx (11% lower P < 0.05) than IE-Hyp. The root mean square (EMGRMS) was reduced by 38 and 27% during IS performed after IE-Nx and IE-Hyp, respectively (Nx vs. Hyp: P < 0.05). Post-ischemia IS-EMGRMS values were higher than during the last 10 s of IE. Sprint exercise mean (IS-MPF) and median (IS-MdPF) power frequencies, and burst duration, were more reduced after IE-Nx than IE-Hyp (P < 0.05). Despite increased muscle lactate accumulation, acidification, and metaboreflex activation from 10 to 60 s of ischemia, IS-Wmean (+23%) and burst duration (+10%) increased, while IS-EMGRMS decreased (-24%, P < 0.05), with IS-MPF and IS-MdPF remaining unchanged. In conclusion, close to task failure, muscle activation is lower in hypoxia than in normoxia. Task failure is predominantly caused by central mechanisms, which recover to great extent within 1 min even when the legs remain ischemic. There is dissociation between the recovery of EMGRMS and performance. The reduction of surface electromyogram MPF, MdPF and burst duration due to fatigue is associated but not caused by muscle acidification and lactate accumulation. Despite metaboreflex stimulation, muscle activation and power output recovers partly in ischemia indicating that metaboreflex activation has a minor impact on sprint performance.

Keywords: EMG; electromyography; exhaustion; fatigue; high-intensity; hypoxia; lactate; performance

References

  1. J Appl Physiol (1985). 2011 Jun;110(6):1708-15 - PubMed
  2. J Electromyogr Kinesiol. 2003 Apr;13(2):139-47 - PubMed
  3. Neurosci Lett. 1998 Nov 27;257(2):109-12 - PubMed
  4. Scand J Med Sci Sports. 2013 Feb;23(1):57-65 - PubMed
  5. Circ Res. 1997 Jan;80(1):62-8 - PubMed
  6. J Appl Physiol (1985). 2010 Feb;108(2):454-6; discussion 456-7 - PubMed
  7. J Physiol. 1954 Mar 29;123(3):553-64 - PubMed
  8. J Physiol. 1986 Oct;379:451-9 - PubMed
  9. J Appl Physiol (1985). 2013 Mar 1;114(5):566-77 - PubMed
  10. Physiol Rev. 2001 Oct;81(4):1725-89 - PubMed
  11. J Appl Physiol (1985). 2013 Aug 1;115(3):355-64 - PubMed
  12. J Appl Physiol (1985). 2009 Jun;106(6):2060-2 - PubMed
  13. J Appl Physiol (1985). 1999 Sep;87(3):1163-71 - PubMed
  14. J Physiol. 2003 Aug 15;551(Pt 1):277-86 - PubMed
  15. J Physiol. 2009 Jan 15;587(1):271-83 - PubMed
  16. J Appl Physiol (1985). 1987 Oct;63(4):1475-80 - PubMed
  17. High Alt Med Biol. 2009 Summer;10 (2):123-34 - PubMed
  18. J Physiol. 2007 May 15;581(Pt 1):389-403 - PubMed
  19. J Physiol. 2015 Oct 15;593(20):4649-64 - PubMed
  20. J Appl Physiol (1985). 2010 Dec;109 (6):1842-51 - PubMed
  21. J Physiol. 2013 Mar 1;591(5):1373-83 - PubMed
  22. J Neurophysiol. 2013 May;109(9):2374-81 - PubMed
  23. J Physiol. 2013 Mar 1;591(5):1339-46 - PubMed
  24. PLoS One. 2015 Dec 02;10(12):e0144151 - PubMed
  25. Am J Physiol Regul Integr Comp Physiol. 2015 Jun 15;308(12):R1008-20 - PubMed
  26. Muscle Nerve. 2013 Dec;48(6):920-9 - PubMed
  27. J Appl Physiol (1985). 2012 Aug;113(3):401-9 - PubMed
  28. J Appl Physiol (1985). 2008 Dec;105(6):1714-24 - PubMed
  29. Br Med J. 1927 Sep 24;2(3481):545-6 - PubMed
  30. J Electromyogr Kinesiol. 2009 Apr;19(2):182-98 - PubMed
  31. Am J Physiol Regul Integr Comp Physiol. 2003 Feb;284(2):R304-16 - PubMed
  32. Brain Res. 1997 Mar 7;750(1-2):147-54 - PubMed
  33. Muscle Nerve. 1988 Jul;11(7):714-9 - PubMed
  34. J Appl Physiol (1985). 2012 Apr;112(8):1335-44 - PubMed
  35. Muscle Nerve. 2001 Feb;24(2):247-53 - PubMed
  36. Neuroscience. 2016 Feb 9;314:125-33 - PubMed
  37. J Physiol. 2014 Nov 15;592(22):5011-24 - PubMed
  38. J Appl Physiol (1985). 2010 Oct;109(4):966-76 - PubMed
  39. High Alt Med Biol. 2014 Dec;15(4):472-82 - PubMed
  40. Exp Brain Res. 1982;46(2):197-204 - PubMed
  41. J Appl Physiol (1985). 2013 Sep 1;115(5):634-42 - PubMed
  42. J Appl Physiol (1985). 2015 Mar 1;118(5):646-54 - PubMed
  43. Eur J Appl Physiol Occup Physiol. 1997;76(4):308-13 - PubMed
  44. Muscle Nerve. 2000 Aug;23 (8):1187-93 - PubMed
  45. J Physiol. 2001 Oct 1;536(Pt 1):161-6 - PubMed
  46. J Appl Physiol (1985). 1990 Mar;68(3):1177-85 - PubMed
  47. Scand J Med Sci Sports. 1997 Aug;7(4):206-13 - PubMed
  48. Exerc Sport Sci Rev. 2005 Jan;33(1):9-16 - PubMed
  49. Acta Physiol Scand. 1992 Jun;145(2):129-38 - PubMed
  50. Exp Physiol. 2014 Feb;99(2):414-26 - PubMed
  51. J Appl Physiol (1985). 1994 Feb;76(2):634-40 - PubMed
  52. J Appl Physiol (1985). 2015 Apr 1;118(7):880-9 - PubMed
  53. J Appl Physiol (1985). 1988 Jun;64(6):2306-13 - PubMed
  54. J Appl Physiol (1985). 1991 Nov;71(5):1878-85 - PubMed
  55. J Appl Physiol (1985). 1996 Mar;80(3):876-84 - PubMed
  56. J Physiol. 2014 Dec 15;592(24):5445-59 - PubMed
  57. Free Radic Res. 2014 Jan;48(1):30-42 - PubMed
  58. J Neurosci. 2006 May 3;26(18):4796-802 - PubMed
  59. Exp Physiol. 2014 Jul;99(7):951-63 - PubMed
  60. J Appl Physiol (1985). 1992 Dec;73(6):2524-9 - PubMed
  61. J Appl Physiol (1985). 1995 Nov;79(5):1469-78 - PubMed
  62. J Physiol. 2011 Nov 1;589(Pt 21):5299-309 - PubMed
  63. J Sports Sci Med. 2010 Dec 01;9(4):620-8 - PubMed
  64. Scand J Med Sci Sports. 2009 Oct;19(5):695-702 - PubMed
  65. J Neurophysiol. 2008 Sep;100(3):1184-201 - PubMed
  66. Prog Brain Res. 1996;113:83-100 - PubMed
  67. J Electromyogr Kinesiol. 2003 Apr;13(2):181-90 - PubMed
  68. Acta Physiol (Oxf). 2012 Dec;206(4):242-50 - PubMed
  69. J Physiol. 1997 Dec 15;505 ( Pt 3):785-95 - PubMed
  70. J Physiol. 1993 May;464:75-120 - PubMed
  71. Muscle Nerve. 1984 Nov-Dec;7(9):691-9 - PubMed
  72. Exp Brain Res. 1982;46(2):191-6 - PubMed
  73. Respir Physiol Neurobiol. 2015 Sep 15;216:78-85 - PubMed
  74. Eur J Appl Physiol. 2003 Oct;90(3-4):411-9 - PubMed
  75. J Appl Physiol (1985). 1991 Dec;71(6):2332-7 - PubMed
  76. J Appl Physiol (1985). 2015 Feb 15;118(4):408-18 - PubMed
  77. Exp Brain Res. 1978 Apr 14;31(4):511-22 - PubMed
  78. Acta Physiol (Oxf). 2014 Apr;210(4):875-88 - PubMed
  79. J Physiol. 2014 Feb 1;592(3):463-74 - PubMed
  80. J Physiol. 2010 Jun 1;588(Pt 11):1985-95 - PubMed
  81. Fatigue. 2014;2(2):73-92 - PubMed
  82. Scand J Med Sci Sports. 2013 Oct;23(5):e313-9 - PubMed
  83. J Physiol. 2008 Jan 1;586(1):161-73 - PubMed
  84. J Appl Physiol (1985). 2004 Jun;96(6):2133-8 - PubMed
  85. J Electromyogr Kinesiol. 2000 Oct;10(5):283-6 - PubMed
  86. Muscle Nerve. 1993 Feb;16(2):135-41 - PubMed
  87. Am J Physiol Regul Integr Comp Physiol. 2003 Feb;284(2):R291-303 - PubMed
  88. J Physiol. 1991 Apr;435:547-58 - PubMed
  89. J Physiol. 2015 Oct 15;593(20):4631-48 - PubMed
  90. J Appl Physiol (1985). 2009 Feb;106(2):556-65 - PubMed
  91. Eur J Appl Physiol. 2010 Jul;109(4):763-70 - PubMed
  92. J Physiol. 1996 Jan 15;490 ( Pt 2):529-36 - PubMed
  93. J Appl Physiol (1985). 2012 Feb;112(4):571-9 - PubMed
  94. Physiol Rev. 2000 Oct;80(4):1411-81 - PubMed

Publication Types