Display options
Share it on

PeerJ. 2016 Jan 25;4:e1562. doi: 10.7717/peerj.1562. eCollection 2016.

Structural strength of cancellous specimens from bovine femur under cyclic compression.

PeerJ

Kaori Endo, Satoshi Yamada, Masahiro Todoh, Masahiko Takahata, Norimasa Iwasaki, Shigeru Tadano

Affiliations

  1. Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine , Sapporo , Japan.
  2. Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University , Sapporo , Japan.

PMID: 26855856 PMCID: PMC4741075 DOI: 10.7717/peerj.1562

Abstract

The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01) and structural model index (SMI, r = - 0.81, p < 0.01). The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01) and SMI (r = - 0.78, p < 0.01). These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that baseline cancellous bone structure estimated from adjacent non-fractured bone contributes to the cancellous bone strength during collapse.

Keywords: Cancellous bone; Collapse; Cyclic compression; Micro-CT; Osteoporosis; Structural indices; Structural strength

References

  1. Bone. 2009 Dec;45(6):1104-16 - PubMed
  2. PLoS One. 2013 Dec 30;8(12):e83662 - PubMed
  3. N Engl J Med. 2003 Jul 24;349(4):327-34 - PubMed
  4. BMJ. 2006 Dec 16;333(7581):1251-6 - PubMed
  5. J Orthop Res. 1999 May;17(3):346-53 - PubMed
  6. J Biomech. 1994 Sep;27(9):1159-68 - PubMed
  7. Bone. 2014 Sep;66:205-13 - PubMed
  8. J Biomech. 1994 Nov;27(11):1309-18 - PubMed
  9. Bone. 2012 Jun;50(6):1281-7 - PubMed
  10. J Biomech. 2015 Mar 18;48(5):875-82 - PubMed
  11. J Biomech. 1997 May;30(5):487-95 - PubMed
  12. Mayo Clin Proc. 2010 Sep;85(9):806-13 - PubMed
  13. J Biomech. 2014 Nov 28;47(15):3605-12 - PubMed
  14. J Biomech. 1994 Sep;27(9):1127-36 - PubMed
  15. Bone. 2007 Jan;40(1):160-8 - PubMed
  16. J Bone Miner Res. 1996 Jun;11(6):707-30 - PubMed
  17. J Biomech. 1994 Apr;27(4):375-89 - PubMed
  18. J Shoulder Elbow Surg. 1997 Mar-Apr;6(2):97-104 - PubMed
  19. J Clin Densitom. 2014 Oct-Dec;17 (4):438-48 - PubMed
  20. Bone. 2010 Jan;46(1):148-54 - PubMed
  21. Clin Orthop Surg. 2012 Sep;4(3):173-80 - PubMed
  22. Osteoporos Int. 2006 Dec;17(12):1726-33 - PubMed
  23. J Am Acad Orthop Surg. 1999 Jul-Aug;7(4):250-61 - PubMed
  24. Bone. 1999 Jul;25(1):55-60 - PubMed
  25. J Biomech. 1987;20(1):29-33 - PubMed
  26. J Bone Miner Res. 2010 Jul;25(7):1468-86 - PubMed
  27. J Biomech. 2014 Nov 7;47(14 ):3482-7 - PubMed
  28. Med Eng Phys. 2008 Nov;30(9):1112-8 - PubMed
  29. J Bone Miner Res. 2014 Jan;29(1):158-65 - PubMed
  30. Bone. 1994 Jan-Feb;15(1):105-9 - PubMed
  31. J Bone Miner Res. 2007 Dec;22(12):1862-8 - PubMed
  32. CMAJ. 2009 Sep 1;181(5):265-71 - PubMed
  33. Bone. 2004 May;34(5):783-9 - PubMed
  34. J Biomech. 2008;41(2):438-46 - PubMed
  35. Bone. 2010 Dec;47(6):1076-9 - PubMed
  36. J Biomech. 1998 Jul;31(7):601-8 - PubMed
  37. Bone. 1998 Apr;22(4):381-8 - PubMed
  38. J Biomech. 2010 May 28;43(8):1509-13 - PubMed
  39. J Bone Miner Res. 2006 Feb;21(2):307-14 - PubMed
  40. J Biomech. 2001 May;34(5):569-77 - PubMed
  41. Bone. 1995 Nov;17(5 Suppl):505S-511S - PubMed
  42. J Bone Miner Res. 2004 Oct;19(10 ):1640-50 - PubMed
  43. J Biomech. 2010 Mar 22;43(5):953-60 - PubMed
  44. Rev Rhum Engl Ed. 1996 Dec;63(11):859-61 - PubMed
  45. J Biomech. 2003 Jul;36(7):897-904 - PubMed

Publication Types