Display options
Share it on

Nat Commun. 2016 Feb 25;7:10725. doi: 10.1038/ncomms10725.

Magnon spectrum of the helimagnetic insulator Cu2OSeO3.

Nature communications

P Y Portnichenko, J Romhányi, Y A Onykiienko, A Henschel, M Schmidt, A S Cameron, M A Surmach, J A Lim, J T Park, A Schneidewind, D L Abernathy, H Rosner, Jeroen van den Brink, D S Inosov

Affiliations

  1. Institut für Festkörperphysik, TU Dresden, Helmholtzstraße 10, D-01069 Dresden, Germany.
  2. Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany.
  3. Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany.
  4. Heinz Maier-Leibnitz Zentrum (MLZ), TU München, Lichtenbergstraße 1, D-85747 Garching, Germany.
  5. Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, D-85747 Garching, Germany.
  6. Quantum Condensed Matter Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831, USA.
  7. Leibniz Institute for Solid State and Materials Research, IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany.

PMID: 26911567 PMCID: PMC4773425 DOI: 10.1038/ncomms10725

Abstract

Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.

References

  1. Nat Mater. 2015 May;14(5):478-83 - PubMed
  2. Nature. 2006 Aug 17;442(7104):797-801 - PubMed
  3. Nat Nanotechnol. 2013 Dec;8(12):899-911 - PubMed
  4. Science. 2009 Feb 13;323(5916):915-9 - PubMed
  5. Nat Commun. 2014 Dec 23;5:5731 - PubMed
  6. Phys Rev Lett. 2012 Sep 7;109(10):107203 - PubMed
  7. Adv Mater. 2010 Apr 12;22(14):1554-65 - PubMed
  8. Science. 2012 Apr 13;336(6078):198-201 - PubMed
  9. Phys Rev Lett. 2014 Oct 10;113(15):157205 - PubMed
  10. Sci Rep. 2015 Sep 09;5:13579 - PubMed
  11. Phys Rev Lett. 2015 Aug 28;115(9):097203 - PubMed
  12. J Phys Condens Matter. 2012 Oct 31;24(43):432201 - PubMed
  13. Nature. 2011 Mar 17;471(7338):341-4 - PubMed
  14. Nat Commun. 2014 Nov 04;5:5376 - PubMed
  15. Rev Sci Instrum. 2012 Jan;83(1):015114 - PubMed

Publication Types