Display options
Share it on

J Clin Med. 2016 Jan 28;5(2). doi: 10.3390/jcm5020018.

Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats.

Journal of clinical medicine

Agustina Creus, María R Ferreira, María E Oliva, Yolanda B Lombardo

Affiliations

  1. Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina. [email protected].
  2. Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina. [email protected].
  3. Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina. [email protected].
  4. Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina. [email protected].

PMID: 26828527 PMCID: PMC4773774 DOI: 10.3390/jcm5020018

Abstract

This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.

Keywords: cardiac muscle; dyslipidemia; high-sucrose diet; insulin resistance; lipotoxicity; α-linolenic acid (ALA)

References

  1. Nutr Metab (Lond). 2012 Jul 17;9(1):66 - PubMed
  2. J Cardiovasc Pharmacol. 2010 Feb;55(2):161-7 - PubMed
  3. Cardiovasc Res. 2008 Jul 15;79(2):269-78 - PubMed
  4. Circ Res. 2012 Mar 2;110(5):764-76 - PubMed
  5. Curr Probl Cardiol. 2010 Feb;35(2):72-115 - PubMed
  6. J Nutr Biochem. 2013 Jun;24(6):1041-52 - PubMed
  7. Endocrinology. 2005 Dec;146(12):5341-9 - PubMed
  8. Physiol Genomics. 2012 Mar 19;44(6):352-61 - PubMed
  9. Biochim Biophys Acta. 2008 Jan-Feb;1781(1-2):61-71 - PubMed
  10. Prostaglandins Leukot Essent Fatty Acids. 2013 Oct;89(5):279-89 - PubMed
  11. J Nutr Biochem. 2006 Jan;17(1):1-13 - PubMed
  12. Am J Physiol Cell Physiol. 2015 Feb 15;308(4):C297-307 - PubMed
  13. J Lipid Res. 2012 Dec;53(12):2525-45 - PubMed
  14. Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1294-302 - PubMed
  15. Diabetes Care. 2007 Nov;30(11):2804-10 - PubMed
  16. Diabetes. 2004 Jul;53(7):1655-63 - PubMed
  17. Food Funct. 2015 Jul;6(7):2231-9 - PubMed
  18. Circulation. 2005 Jun 7;111(22):2921-6 - PubMed
  19. Br J Nutr. 2009 Jan;101(1):41-50 - PubMed
  20. Prostaglandins Leukot Essent Fatty Acids. 2013 Jan;88(1):71-7 - PubMed
  21. Diabetes. 2004 Sep;53(9):2366-74 - PubMed
  22. J Nutr. 2003 Jan;133(1):127-33 - PubMed
  23. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1226-31 - PubMed
  24. J Biol Chem. 1992 Mar 25;267(9):6278-85 - PubMed
  25. Diabetologia. 2007 Sep;50(9):1938-48 - PubMed
  26. Metabolism. 2008 Jul;57(7):911-9 - PubMed
  27. Am J Physiol Endocrinol Metab. 2012 Jun 15;302(12):E1472-82 - PubMed
  28. Am J Physiol. 1982 Jun;242(6):H1084-94 - PubMed
  29. Pediatr Cardiol. 2011 Mar;32(3):323-8 - PubMed
  30. Diabetes. 1997 Feb;46(2):169-78 - PubMed
  31. J Clin Invest. 2001 Apr;107(7):813-22 - PubMed
  32. J Biol Chem. 1998 Sep 11;273(37):23786-92 - PubMed
  33. Nat Clin Pract Cardiovasc Med. 2006 Sep;3(9):482-9 - PubMed
  34. J Nutr Biochem. 2000 Jan;11(1):30-7 - PubMed
  35. Circulation. 2005 Jan 18;111(2):157-64 - PubMed
  36. J Biol Chem. 2001 Mar 23;276(12 ):8705-12 - PubMed
  37. Trends Cardiovasc Med. 2000 Aug;10(6):238-45 - PubMed
  38. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1784-9 - PubMed
  39. Br J Nutr. 2013 May;109(9):1617-27 - PubMed
  40. J Endocrinol. 2009 Jun;201(3):419-27 - PubMed
  41. Scand J Clin Lab Invest. 1966;18(6):668-72 - PubMed

Publication Types