Display options
Share it on

AMB Express. 2016 Mar;6(1):11. doi: 10.1186/s13568-016-0183-2. Epub 2016 Feb 09.

Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.

AMB Express

Janina Beuker, Anke Steier, Andreas Wittgens, Frank Rosenau, Marius Henkel, Rudolf Hausmann

Affiliations

  1. Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
  2. Center for Peptide Pharmaceuticals, Ulm University, Meyerhofstr. 1, 89081, Ulm, Germany.
  3. Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany. [email protected].

PMID: 26860613 PMCID: PMC4747948 DOI: 10.1186/s13568-016-0183-2

Abstract

Heterologeous production of rhamnolipids in Pseudomonas putida is characterized by advantages of a non-pathogenic host and avoidance of the native quorum sensing regulation in Pseudomonas aeruginosa. Yet, downstream processing is a major problem in rhamnolipid production and increases in complexity at low rhamnolipid titers and when using chemical foam control. This leaves the necessity of a simple concentrating and purification method. Foam fractionation is an elegant method for in situ product removal when producing microbial surfactants. However, up to now in situ foam fractionation is nearly exclusively reported for the production of surfactin with Bacillus subtilis. So far no cultivation integrated foam fractionation process for rhamnolipid production has been reported. This is probably due to excessive bacterial foam enrichment in that system. In this article a simple integrated foam fractionation process is reported for heterologous rhamnolipid production in a bioreactor with easily manageable bacterial foam enrichments. Rhamnolipids were highly concentrated in the foam during the cultivation process with enrichment factors up to 200. The described process was evaluated at different pH, media compositions and temperatures. Foam fractionation processes were characterized by calculating procedural parameter including rhamnolipid and bacterial enrichment, rhamnolipid recovery, YX/S, YP/X, and specific as well as volumetric productivities. Comparing foam fractionation parameters of the rhamnolipid process with the surfactin process a high effectiveness of the integrated foam fractionation for rhamnolipid production was demonstrated.

Keywords: Biosurfactant; Downstream processing; Foam fractionation; Heterologous rhamnolipid; In situ product removal (ISPR); Pseudomonas putida

References

  1. Environ Microbiol. 2002 Dec;4(12):799-808 - PubMed
  2. Biotechnol Prog. 2005 May-Jun;21(3):860-7 - PubMed
  3. Appl Environ Microbiol. 1992 Oct;58(10):3276-82 - PubMed
  4. J Chem Technol Biotechnol. 1990;47(1):23-9 - PubMed
  5. Appl Microbiol Biotechnol. 2015 Aug;99(15):6197-214 - PubMed
  6. Appl Microbiol Biotechnol. 2014 Dec;98(23):9623-32 - PubMed
  7. Environ Microbiol. 2010 Jan;12(1):207-21 - PubMed
  8. Biochim Biophys Acta. 1999 Sep 22;1440(2-3):244-52 - PubMed
  9. Glycoconj J. 1993 Jun;10(3):219-26 - PubMed
  10. J Antibiot (Tokyo). 2014 Sep;67(9):625-30 - PubMed
  11. Bioresour Technol. 2010 Jan;101(1):324-30 - PubMed
  12. Bioresour Technol. 2008 May;99(7):2192-9 - PubMed
  13. Appl Environ Microbiol. 1986 May;51(5):985-9 - PubMed
  14. Biotechnol Bioeng. 2006 Jun 20;94(3):543-53 - PubMed
  15. Biotechnol Prog. 2011 May-Jun;27(3):706-16 - PubMed
  16. Appl Environ Microbiol. 1984 Aug;48(2):301-5 - PubMed
  17. Biotechnol Bioeng. 2001 Apr 20;73(2):95-103 - PubMed
  18. Anal Bioanal Chem. 2008 Jul;391(5):1579-90 - PubMed
  19. Microb Cell Fact. 2011 Apr 22;10 :25 - PubMed
  20. Appl Microbiol. 1967 Jan;15(1):76-81 - PubMed
  21. Appl Microbiol Biotechnol. 2013 Sep;97(17):7607-16 - PubMed
  22. World J Microbiol Biotechnol. 1996 Jan;12(1):82-4 - PubMed
  23. Appl Microbiol Biotechnol. 2014 Aug;98 (16):7013-25 - PubMed
  24. AMB Express. 2015 Dec;5(1):145 - PubMed
  25. Appl Microbiol Biotechnol. 1999 Jan;51(1):22-32 - PubMed
  26. J Chromatogr A. 1995 Feb 17;693(1):7-13 - PubMed
  27. Appl Microbiol Biotechnol. 2010 Jun;87(1):167-74 - PubMed
  28. Biotechnol Bioeng. 1990 Jul;36(3):252-5 - PubMed
  29. Appl Environ Microbiol. 1995 Sep;61(9):3503-6 - PubMed
  30. Gene. 1995 Dec 1;166(1):175-6 - PubMed
  31. Appl Microbiol Biotechnol. 2010 May;86(5):1323-36 - PubMed
  32. Microb Cell Fact. 2011 Oct 17;10:80 - PubMed
  33. Methods Mol Biol. 2010;668:117-39 - PubMed
  34. Appl Environ Microbiol. 1998 Jan;64(1):82-7 - PubMed
  35. Trends Biotechnol. 2006 Nov;24(11):509-15 - PubMed
  36. J Biotechnol. 2012 Dec 31;162(4):366-80 - PubMed
  37. Gene. 1993 Jan 15;123(1):17-24 - PubMed

Publication Types