Display options
Share it on

J Ayurveda Integr Med. 2015 Oct-Dec;6(4):248-58. doi: 10.4103/0975-9476.157951.

Role of chrysin on expression of insulin signaling molecules.

Journal of Ayurveda and integrative medicine

Kottireddy Satyanarayana, Koora Sravanthi, Ivvala Anand Shaker, Rajagopal Ponnulakshmi, Jayaraman Selvaraj

Affiliations

  1. Department of Medical Biochemistry, Bharath University, Chennai, Tamil Nadu, India.
  2. Department of Pharmacology, Sakshi Medical College and Research Centre, Guna, Madhya Pradesh, India.
  3. Department of Zoology, PG and Research, Ethiraj College for Women, Chennai, Tamil Nadu, India.
  4. Department of Biotechnology, PG and Research, Holy Cross College, Trichy, Tamil Nadu, India.

PMID: 26834424 PMCID: PMC4719485 DOI: 10.4103/0975-9476.157951

Abstract

BACKGROUND: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone) is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments.

OBJECTIVE: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats.

MATERIALS AND METHODS: The oral effective dose of chrysin (100 mg/kg body weight) was given once a day until the end of the study (30 days post-induction of diabetes) to high fat diet-induced diabetic rats. At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO) and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed.

RESULTS: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr(632), p- Akt(Thr308)), glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats. The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins.

CONCLUSION: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats.

Keywords: Chrysin; gastrocnemius muscle; high fat diet; insulin signaling; type-2 diabetes

References

  1. Phytother Res. 2001 Mar;15(2):114-8 - PubMed
  2. J Biol Chem. 2001 Apr 27;276(17):14459-65 - PubMed
  3. Phytomedicine. 2001 Mar;8(2):88-93 - PubMed
  4. Diabetes. 2001 May;50(5):1186-92 - PubMed
  5. Curr Med Chem. 2001 Jun;8(7):797-807 - PubMed
  6. Diabet Med. 2002 Jun;19(6):435-9 - PubMed
  7. Am J Clin Nutr. 2002 Sep;76(3):560-8 - PubMed
  8. Acta Physiol Scand. 2003 Aug;178(4):373-83 - PubMed
  9. J Med Food. 2003 Winter;6(4):387-90 - PubMed
  10. Trends Endocrinol Metab. 2004 Apr;15(3):110-5 - PubMed
  11. J Nutr Biochem. 2004 Jun;15(6):350-7 - PubMed
  12. J Biol Chem. 2004 Oct 29;279(44):45304-7 - PubMed
  13. J Clin Invest. 2005 Mar;115(3):718-27 - PubMed
  14. Endocrinology. 2006 Aug;147(8):3709-18 - PubMed
  15. Acta Endocrinol (Copenh). 1990 Mar;122(3):361-8 - PubMed
  16. J Agric Food Chem. 2006 Oct 18;54(21):8018-26 - PubMed
  17. Mol Cancer Ther. 2007 Jan;6(1):220-6 - PubMed
  18. Cell Metab. 2007 Apr;5(4):237-52 - PubMed
  19. Biochem Biophys Res Commun. 2007 Jul 13;358(4):1102-7 - PubMed
  20. Horm Metab Res. 2007 Oct;39(10):717-21 - PubMed
  21. Chem Biol Interact. 2008 Feb 15;171(3):363-8 - PubMed
  22. Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R673-80 - PubMed
  23. Am J Physiol Endocrinol Metab. 2008 Jul;295(1):E38-45 - PubMed
  24. Biochem J. 2008 Jul 15;413(2):201-15 - PubMed
  25. Diabetes. 2009 Apr;58(4):773-95 - PubMed
  26. J Fam Pract. 2009 Nov;58(11 Suppl Clinical):S7-14 - PubMed
  27. Food Chem Toxicol. 2010 Jun;48(6):1654-9 - PubMed
  28. Nat Med. 2010 Apr;16(4):400-2 - PubMed
  29. Int J Mol Sci. 2010 Mar 31;11(4):1365-402 - PubMed
  30. Andrologia. 2012 Jun;44(3):181-6 - PubMed
  31. FASEB J. 2012 Jun;26(6):2383-93 - PubMed
  32. Diabetologia. 2012 Jun;55(6):1577-96 - PubMed
  33. Mol Cell Endocrinol. 2013 Sep 25;378(1-2):15-22 - PubMed
  34. Indian J Endocrinol Metab. 2012 Jul;16(4):558-64 - PubMed
  35. J Physiol Biochem. 2013 Jun;69(2):313-23 - PubMed
  36. Hum Exp Toxicol. 2013 Oct;32(10):1058-66 - PubMed
  37. Arch Biochem Biophys. 1988 Aug 1;264(2):482-91 - PubMed
  38. Toxicol Rep. 2014 May 12;1:200-208 - PubMed
  39. Nature. 1985 Feb 28-Mar 6;313(6005):756-61 - PubMed
  40. Biochem Biophys Res Commun. 1987 May 29;145(1):134-8 - PubMed
  41. J Allergy Clin Immunol. 1984 Jun;73(6):819-23 - PubMed
  42. Cell Immunol. 1981 Apr;59(2):301-18 - PubMed
  43. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6792-6 - PubMed
  44. J Nutr. 1981 Mar;111(3):531-6 - PubMed
  45. Pharmacol Biochem Behav. 1994 Jan;47(1):1-4 - PubMed
  46. Nature. 1995 Dec 21-28;378(6559):785-9 - PubMed
  47. AIDS Res Hum Retroviruses. 1996 Jan 1;12(1):39-46 - PubMed
  48. Am J Physiol. 1996 Apr;270(4 Pt 1):E667-76 - PubMed

Publication Types