Display options
Share it on

Nat Commun. 2016 Feb 19;7:10559. doi: 10.1038/ncomms10559.

Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1-x)Mn(x))2Se3.

Nature communications

J Sánchez-Barriga, A Varykhalov, G Springholz, H Steiner, R Kirchschlager, G Bauer, O Caha, E Schierle, E Weschke, A A Ünal, S Valencia, M Dunst, J Braun, H Ebert, J Minár, E Golias, L V Yashina, A Ney, V Holý, O Rader

Affiliations

  1. Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
  2. Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenbergerstr. 69, 4040 Linz, Austria.
  3. Department of Condensed Matter Physics, CEITEC, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
  4. Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany.
  5. New Technologies Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic.
  6. Department of Chemistry, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
  7. Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic.

PMID: 26892831 PMCID: PMC4762886 DOI: 10.1038/ncomms10559

Abstract

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.

References

  1. Science. 2007 Nov 2;318(5851):766-70 - PubMed
  2. Phys Rev Lett. 2012 Jun 22;108(25):256811 - PubMed
  3. Phys Rev Lett. 2009 Apr 17;102(15):156603 - PubMed
  4. Phys Rev Lett. 2012 Nov 2;109(18):186403 - PubMed
  5. Phys Rev Lett. 2011 Aug 19;107(8):086802 - PubMed
  6. Phys Rev Lett. 2015 Mar 6;114(9):096802 - PubMed
  7. Phys Rev Lett. 2012 Aug 17;109(7):076801 - PubMed
  8. Science. 2013 Apr 12;340(6129):167-70 - PubMed
  9. Science. 2009 Feb 27;323(5918):1184-7 - PubMed
  10. Science. 2010 Jul 2;329(5987):61-4 - PubMed
  11. Science. 2010 Aug 6;329(5992):659-62 - PubMed
  12. Nat Mater. 2012 Nov;11(11):957-62 - PubMed
  13. Phys Rev Lett. 2008 Oct 3;101(14):146802 - PubMed
  14. Phys Rev Lett. 2012 Mar 16;108(11):117601 - PubMed
  15. Phys Rev Lett. 2012 Jun 22;108(25):256810 - PubMed

Publication Types