Display options
Share it on

Front Microbiol. 2016 Jan 14;6:1540. doi: 10.3389/fmicb.2015.01540. eCollection 2015.

Recombination Does Not Hinder Formation or Detection of Ecological Species of Synechococcus Inhabiting a Hot Spring Cyanobacterial Mat.

Frontiers in microbiology

Melanie C Melendrez, Eric D Becraft, Jason M Wood, Millie T Olsen, Donald A Bryant, John F Heidelberg, Douglas B Rusch, Frederick M Cohan, David M Ward

Affiliations

  1. Department of Land Resources and Environmental Science, Montana State University Bozeman, MT, USA.
  2. Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park, PA, USA.
  3. Department of Biological Sciences, College of Letters, Arts and Sciences, University of Southern California Los Angeles, CA, USA.
  4. Informatics Group, J. Craig Venter Institute Rockville, MD, USA.
  5. Department of Biology, Wesleyan University Middletown, CT, USA.

PMID: 26834710 PMCID: PMC4712262 DOI: 10.3389/fmicb.2015.01540

Abstract

Recent studies of bacterial speciation have claimed to support the biological species concept-that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B') of Synechococcus in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B' lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B' lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.

Keywords: Ecotype Simulation; Synechococcus; cyanobacteria; ecotype; multi-locus sequence typing; population genetics; recombination; speciation

References

  1. Mol Biol Evol. 1999 Nov;16(11):1496-502 - PubMed
  2. Genetics. 1999 Dec;153(4):1525-33 - PubMed
  3. Appl Environ Microbiol. 2000 Mar;66(3):1038-49 - PubMed
  4. Genetics. 2000 Apr;154(4):1439-50 - PubMed
  5. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6981-5 - PubMed
  6. Res Microbiol. 2000 Jul-Aug;151(6):465-9 - PubMed
  7. Bioinformatics. 2000 Jul;16(7):573-82 - PubMed
  8. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):182-7 - PubMed
  9. Annu Rev Microbiol. 2001;55:561-90 - PubMed
  10. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13757-62 - PubMed
  11. Genetics. 2002 Mar;160(3):1231-41 - PubMed
  12. Theor Popul Biol. 2002 Jun;61(4):449-60 - PubMed
  13. Mol Biol Evol. 2002 Dec;19(12):2226-38 - PubMed
  14. Theor Appl Genet. 2002 Nov;105(6-7):1058-1066 - PubMed
  15. Appl Environ Microbiol. 2003 May;69(5):2893-8 - PubMed
  16. J Bacteriol. 2003 Jun;185(11):3307-16 - PubMed
  17. J Bacteriol. 2004 Mar;186(5):1518-30 - PubMed
  18. Science. 2004 Apr 23;304(5670):581-4 - PubMed
  19. Genome Res. 2004 Jul;14(7):1394-403 - PubMed
  20. Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11030-5 - PubMed
  21. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794-7 - PubMed
  22. BMC Bioinformatics. 2004 Aug 19;5:113 - PubMed
  23. Bioinformatics. 2005 Jan 15;21(2):260-2 - PubMed
  24. J Mol Evol. 1992 Feb;34(2):126-9 - PubMed
  25. Science. 2004 Dec 10;306(5703):1928-9 - PubMed
  26. FEMS Microbiol Lett. 2004 Dec 15;241(2):129-34 - PubMed
  27. BMC Biol. 2005 Mar 07;3:6 - PubMed
  28. Mol Biol Evol. 2005 Dec;22(12):2354-61 - PubMed
  29. Appl Environ Microbiol. 2006 Jan;72(1):544-50 - PubMed
  30. Appl Environ Microbiol. 2006 Jan;72(1):723-32 - PubMed
  31. Nat Rev Microbiol. 2006 Sep;4(9):670-81 - PubMed
  32. Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):1997-2008 - PubMed
  33. Genetics. 2007 Mar;175(3):1251-66 - PubMed
  34. Genetics. 2007 May;176(1):441-53 - PubMed
  35. PLoS Biol. 2007 Mar;5(3):e77 - PubMed
  36. Genetics. 2007 Jun;176(2):1035-47 - PubMed
  37. Mol Biol Evol. 2007 Aug;24(8):1596-9 - PubMed
  38. Curr Biol. 2007 May 15;17(10):R373-86 - PubMed
  39. J Bacteriol. 2007 Nov;189(21):7808-18 - PubMed
  40. Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14092-7 - PubMed
  41. Methods Mol Biol. 2007;396:135-52 - PubMed
  42. ISME J. 2007 Dec;1(8):703-13 - PubMed
  43. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2504-9 - PubMed
  44. Appl Environ Microbiol. 2008 May;74(10):3302-5 - PubMed
  45. Science. 2008 May 23;320(5879):1081-5 - PubMed
  46. Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):2971-86 - PubMed
  47. ISME J. 2009 Feb;3(2):199-208 - PubMed
  48. PLoS One. 2008;3(12):e4002 - PubMed
  49. Science. 2009 Feb 6;323(5915):737-41 - PubMed
  50. Genome Res. 2009 May;19(5):744-56 - PubMed
  51. PLoS Genet. 2009 Jun;5(6):e1000520 - PubMed
  52. Lett Appl Microbiol. 2009 Nov;49(5):580-8 - PubMed
  53. Mol Biol Evol. 2010 Feb;27(2):221-4 - PubMed
  54. Appl Environ Microbiol. 2010 Mar;76(5):1349-58 - PubMed
  55. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2383-90 - PubMed
  56. Trends Microbiol. 2010 Jul;18(7):315-22 - PubMed
  57. Syst Biol. 2010 May;59(3):307-21 - PubMed
  58. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11453-8 - PubMed
  59. Trends Microbiol. 2011 Jan;19(1):1-7 - PubMed
  60. Appl Environ Microbiol. 2011 Feb;77(4):1359-67 - PubMed
  61. Environ Microbiol. 2012 Feb;14(2):372-86 - PubMed
  62. ISME J. 2011 Aug;5(8):1262-78 - PubMed
  63. FEMS Microbiol Rev. 2011 Sep;35(5):957-76 - PubMed
  64. Appl Environ Microbiol. 2011 Nov;77(21):7689-97 - PubMed
  65. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  66. PLoS Biol. 2012 Feb;10(2):e1001265 - PubMed
  67. Science. 2012 Apr 6;336(6077):48-51 - PubMed
  68. Nat Methods. 2012 Jul 30;9(8):772 - PubMed
  69. Trends Genet. 2013 Mar;29(3):170-5 - PubMed
  70. PLoS Genet. 2013 Apr;9(4):e1003381 - PubMed
  71. Methods Ecol Evol. 2013 Dec 1;4(12):null - PubMed
  72. Science. 2014 Apr 25;344(6182):416-20 - PubMed
  73. Appl Environ Microbiol. 2014 Aug;80(16):4842-53 - PubMed
  74. Science. 2015 May 29;348(6238):1019-23 - PubMed
  75. Front Microbiol. 2015 Jun 22;6:590 - PubMed
  76. Front Microbiol. 2015 Jun 23;6:604 - PubMed
  77. Front Microbiol. 2015 Jun 29;6:626 - PubMed
  78. Mol Biol Evol. 1989 Sep;6(5):526-38 - PubMed
  79. Virus Evol. 2015 May 26;1(1):vev003 - PubMed
  80. Appl Environ Microbiol. 1997 Apr;63(4):1375-81 - PubMed
  81. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5 - PubMed
  82. Microbiol Mol Biol Rev. 1998 Dec;62(4):1353-70 - PubMed

Publication Types