Display options
Share it on

Front Plant Sci. 2016 Jan 19;6:1245. doi: 10.3389/fpls.2015.01245. eCollection 2015.

Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains.

Frontiers in plant science

Manuela Peukert, Johannes Thiel, Hans-Peter Mock, Doris Marko, Winfriede Weschke, Andrea Matros

Affiliations

  1. Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany; University of CologneCologne, Germany.
  2. Plant Architecture Group, IPK-Gatersleben Gatersleben, Germany.
  3. Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben) Gatersleben, Germany.
  4. Department of Food Chemistry and Toxicology, University of Vienna Vienna, Austria.
  5. Seed Development Group, IPK-Gatersleben Gatersleben, Germany.

PMID: 26834760 PMCID: PMC4717867 DOI: 10.3389/fpls.2015.01245

Abstract

Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed.

Keywords: antioxidant; cereals; grain development; oligofructan; spatial distribution; stress response

References

  1. J Nutr Biochem. 2007 Nov;18(11):736-45 - PubMed
  2. Phytother Res. 2013 Oct;27(10):1457-73 - PubMed
  3. Trends Plant Sci. 2004 Nov;9(11):523-8 - PubMed
  4. Annu Rev Plant Biol. 2003;54:431-54 - PubMed
  5. Carbohydr Res. 2011 Nov 29;346(16):2603-11 - PubMed
  6. Am J Clin Nutr. 2001 Feb;73(2 Suppl):451S-455S - PubMed
  7. J Exp Bot. 2008;59(11):2905-16 - PubMed
  8. Plant Physiol. 2008 Nov;148(3):1436-52 - PubMed
  9. Planta. 2011 Jul;234(1):35-45 - PubMed
  10. Biochim Biophys Acta. 2007 Jun;1768(6):1611-9 - PubMed
  11. Plant Physiol. 2003 Feb;131(2):621-31 - PubMed
  12. Plant J. 2000 Mar;21(5):455-67 - PubMed
  13. Front Plant Sci. 2013 Apr 19;4:89 - PubMed
  14. J Exp Bot. 2003 Jan;54(381):249-58 - PubMed
  15. Cell Mol Life Sci. 2009 Jul;66(13):2007-23 - PubMed
  16. Plant Physiol. 2010 Feb;152(2):698-710 - PubMed
  17. Carcinogenesis. 2005 Jun;26(6):1064-76 - PubMed
  18. J Hum Nutr Diet. 2011 Apr;24(2):154-76 - PubMed
  19. Plant J. 2003 Jan;33(2):395-411 - PubMed
  20. Planta. 2000 Oct;211(5):701-7 - PubMed
  21. Plant Cell Physiol. 2013 Dec;54(12):2047-57 - PubMed
  22. Plant Cell. 2003 Sep;15(9):2076-92 - PubMed
  23. Plant Cell Physiol. 2005 Apr;46(4):620-8 - PubMed
  24. Plant Physiol. 1999 Jun;120(2):351-60 - PubMed
  25. J Exp Bot. 2009;60(1):9-18 - PubMed
  26. Plant J. 1996 Jun;9(6):841-50 - PubMed
  27. Plant Physiol. 2008 Dec;148(4):1964-84 - PubMed
  28. PLoS One. 2012;7(2):e31081 - PubMed
  29. Annu Rev Plant Biol. 2005;56:253-79 - PubMed
  30. Plant Physiol. 1987 Nov;85(3):706-10 - PubMed
  31. Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61 - PubMed
  32. J Exp Bot. 2013 Feb;64(4):1025-38 - PubMed
  33. Planta. 2014 Sep;240(3):629-43 - PubMed
  34. Front Plant Sci. 2015 Feb 20;6:89 - PubMed
  35. Planta. 2009 Oct;230(5):1071-9 - PubMed
  36. Antioxid Redox Signal. 2013 Jun 1;18(16):2163-83 - PubMed
  37. Plant Physiol. 2012 Oct;160(2):777-87 - PubMed
  38. J Exp Bot. 2003 Jan;54(382):489-94 - PubMed
  39. J Agric Food Chem. 2013 Sep 25;61(38):9251-9 - PubMed
  40. Plant J. 2012 Aug;71(4):639-55 - PubMed
  41. Genome. 2006 Oct;49(10):1209-14 - PubMed
  42. Plant Signal Behav. 2008 Jul;3(7):439-45 - PubMed
  43. Trends Plant Sci. 2008 Aug;13(8):409-14 - PubMed
  44. Br J Nutr. 2003 Dec;90(6):1057-70 - PubMed
  45. New Phytol. 2012 Feb;193(3):806-15 - PubMed
  46. J Exp Bot. 2003 Jan;54(382):549-67 - PubMed
  47. Curr Opin Plant Biol. 2004 Jun;7(3):235-46 - PubMed
  48. Plant Signal Behav. 2008 Dec;3(12):1119-21 - PubMed
  49. Plant J. 2007 Feb;49(3):463-91 - PubMed
  50. J Plant Physiol. 2014 Feb 15;171(3-4):359-72 - PubMed
  51. Plant Biotechnol J. 2011 Dec;9(9):1022-37 - PubMed
  52. Plant J. 2010 Nov;64(4):589-603 - PubMed
  53. J Phys Chem B. 2012 Aug 16;116(32):9668-75 - PubMed
  54. Mol Plant. 2009 Sep;2(5):873-82 - PubMed
  55. Biophys J. 2003 May;84(5):3147-54 - PubMed
  56. Plant Physiol. 2003 Sep;133(1):231-42 - PubMed
  57. Plant J. 2015 Jun;82(5):822-39 - PubMed
  58. J Exp Bot. 2013 Sep;64(12):3681-96 - PubMed
  59. Eur J Biochem. 1999 Mar;260(3):726-35 - PubMed
  60. Plant J. 2011 Dec;68(5):857-70 - PubMed
  61. Plant Cell. 2014 Sep;26(9):3728-44 - PubMed
  62. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11652-6 - PubMed
  63. J Exp Bot. 2014 Oct;65(18):5291-304 - PubMed
  64. Crit Rev Food Sci Nutr. 2015;55(3):414-36 - PubMed
  65. Plant Cell Environ. 2013 Jul;36(7):1242-55 - PubMed
  66. Front Plant Sci. 2015 Mar 23;6:180 - PubMed
  67. Plant J. 2001 May;26(4):421-33 - PubMed
  68. J Exp Bot. 2008;59(4):793-802 - PubMed
  69. Plant Mol Biol. 2012 Oct;80(3):299-314 - PubMed
  70. J Exp Bot. 2004 Jun;55(401):1325-33 - PubMed
  71. Plant J. 2014 May;78(4):686-96 - PubMed
  72. Front Plant Sci. 2013 Jul 09;4:247 - PubMed
  73. J Nutr. 2007 Nov;137(11 Suppl):2493S-2502S - PubMed
  74. Carbohydr Res. 1991 Sep 18;217:137-51 - PubMed

Publication Types