Display options
Share it on

Sci Rep. 2016 Feb 11;6:20899. doi: 10.1038/srep20899.

Probing electron-phonon excitations in molecular junctions by quantum interference.

Scientific reports

C Bessis, M L Della Rocca, C Barraud, P Martin, J C Lacroix, T Markussen, P Lafarge

Affiliations

  1. Université Paris Diderot, Sorbonne Paris Cité, MPQ, UMR 7162, CNRS, 75205 Paris Cedex 13, France.
  2. Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J.-A. de Baïf, 75205 Paris Cedex 13, France.
  3. QuantumWise A/S, Fruebjergvej 3, Box 4, DK-2100 Copenhagen, Denmark.

PMID: 26864735 PMCID: PMC4750039 DOI: 10.1038/srep20899

Abstract

Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.

References

  1. Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3152-5 - PubMed
  2. Nat Nanotechnol. 2012 Mar 25;7(5):305-9 - PubMed
  3. Nano Lett. 2015 Aug 12;15(8):5569-73 - PubMed
  4. ACS Nano. 2011 May 24;5(5):4219-27 - PubMed
  5. J Am Chem Soc. 2012 Jan 11;134(1):154-7 - PubMed
  6. J Am Chem Soc. 2011 Jun 22;133(24):9556-63 - PubMed
  7. Beilstein J Nanotechnol. 2011;2:699-713 - PubMed
  8. Nano Lett. 2006 Nov;6(11):2422-6 - PubMed
  9. J Chem Phys. 2008 Aug 7;129(5):054701 - PubMed
  10. Phys Chem Chem Phys. 2006 Oct 7;8(37):4297-9 - PubMed
  11. Phys Rev Lett. 2011 Jul 22;107(4):046802 - PubMed
  12. J Am Chem Soc. 2013 Jul 17;135(28):10218-21 - PubMed
  13. Nano Lett. 2012 Mar 14;12(3):1643-7 - PubMed
  14. Chem Soc Rev. 2011 Jul;40(7):3995-4048 - PubMed
  15. Langmuir. 2012 Aug 14;28(32):11767-78 - PubMed
  16. J Am Chem Soc. 2011 Nov 30;133(47):19168-77 - PubMed
  17. J Chem Phys. 2010 Jun 14;132(22):224104 - PubMed
  18. Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3203-6 - PubMed
  19. Langmuir. 2012 Jan 17;28(2):1267-75 - PubMed
  20. Phys Chem Chem Phys. 2014 Jan 14;16(2):653-62 - PubMed
  21. ACS Nano. 2013 Oct 22;7(10):9183-94 - PubMed
  22. Phys Rev Lett. 2012 Aug 3;109(5):056801 - PubMed
  23. Phys Rev Lett. 1992 Apr 20;68(16):2512-2515 - PubMed

Publication Types