Display options
Share it on

Ecol Evol. 2016 Feb 03;6(5):1411-9. doi: 10.1002/ece3.1958. eCollection 2016 Mar.

Scale dependence of sex ratio in wild plant populations: implications for social selection.

Ecology and evolution

Brian J Sanderson, Malcolm E Augat, Douglas R Taylor, Edmund D Brodie

Affiliations

  1. Mountain Lake Biological Station and Department of Biology University of Virginia 485 McCormick Road Charlottesville Virginia 22904.

PMID: 26865952 PMCID: PMC4739348 DOI: 10.1002/ece3.1958

Abstract

Social context refers to the composition of an individual's social interactants, including potential mates. In spatially structured populations, social context can vary among individuals within populations, generating the opportunity for social selection to drive differences in fitness functions among individuals at a fine spatial scale. In sexually polymorphic plants, the local sex ratio varies at a fine scale and thus has the potential to generate this opportunity. We measured the spatial distribution of two wild populations of the gynodioecious plant Silene vulgaris and show that there is fine-scale heterogeneity in the local distribution of the sexes within these populations. We demonstrate that the largest variance in sex ratio is among nearest neighbors. This variance is greatly reduced as the spatial scale of social interactions increases. These patterns suggest the sex of neighbors has the potential to generate fine-scale differences in selection differentials among individuals. One of the most important determinants of social interactions in plants is the behavior of pollinators. These results suggest that the potential for selection arising from sex ratio will be greatest when pollen is shared among nearest neighbors. Future studies incorporating the movement of pollinators may reveal whether and how this fine-scale variance in sex ratio affects the fitness of individuals in these populations.

Keywords: Context‐dependence; Silene vulgaris; gynodioecy; local mate competition; multilevel selection; population structure

References

  1. Am Nat. 2000 Jun;155(6):814-819 - PubMed
  2. Genetics. 2001 Jun;158(2):833-41 - PubMed
  3. Evolution. 2003 Mar;57(3):509-17 - PubMed
  4. Genetica. 2005 Feb;123(1-2):49-62 - PubMed
  5. New Phytol. 2006;169(4):689-98 - PubMed
  6. Ann Bot. 2006 Aug;98(2):431-7 - PubMed
  7. J Evol Biol. 2006 Jul;19(4):1190-201 - PubMed
  8. New Phytol. 2006;172(4):763-73 - PubMed
  9. Evolution. 2007 Feb;61(2):334-45 - PubMed
  10. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10847-52 - PubMed
  11. Am Nat. 1997 Sep;150(3):406-19 - PubMed
  12. New Phytol. 2009 Aug;183(3):649-60 - PubMed
  13. Evolution. 2010 Nov;64(11):3183-9 - PubMed
  14. Trends Ecol Evol. 1994 Jul;9(7):246-50 - PubMed
  15. Ann Bot. 2012 Feb;109(3):505-19 - PubMed
  16. Evolution. 2011 Oct;65(10):2771-81 - PubMed
  17. J Evol Biol. 2012 Jan;25(1):130-7 - PubMed
  18. Ecology. 2014 Apr;95(4):910-9 - PubMed
  19. Evolution. 2015 May;69(5):1232-43 - PubMed
  20. Evolution. 2015 Jun;69(6):1361-1374 - PubMed
  21. Oecologia. 1997 Jul;111(3):404-412 - PubMed
  22. Oecologia. 1982 Nov;55(2):251-257 - PubMed
  23. Evolution. 1997 Oct;51(5):1352-1362 - PubMed
  24. Am Nat. 1999 Mar;153(3):254-266 - PubMed
  25. Science. 1967 Apr 28;156(3774):477-88 - PubMed
  26. Genetics. 1998 Nov;150(3):1267-82 - PubMed

Publication Types