Display options
Share it on

Sci Rep. 2016 Mar 02;6:22355. doi: 10.1038/srep22355.

Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems.

Scientific reports

Q Li, J H Liang, Y M Luo, Z Ding, T Gu, Z Hu, C Y Hua, H-J Lin, T W Pi, S P Kang, C Won, Y Z Wu

Affiliations

  1. Department of Physics, State Key Laboratory of Surface Physics and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, People's Republic of China.
  2. Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, Dresden 01187, Germany.
  3. National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China.
  4. Department of Physics, Kyung Hee University, Seoul 130-701, Republic of Korea.

PMID: 26932164 PMCID: PMC4773757 DOI: 10.1038/srep22355

Abstract

Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices.

References

  1. Phys Rev B Condens Matter. 1992 Jun 1;45(22):13117-13120 - PubMed
  2. Phys Rev B Condens Matter. 1993 Apr 15;47(15):9952-9955 - PubMed
  3. Phys Rev Lett. 1990 Dec 3;65(23):2913-2915 - PubMed
  4. Phys Rev Lett. 1993 Mar 22;70(12):1878-1881 - PubMed
  5. Phys Rev Lett. 1996 Oct 14;77(16):3451-3454 - PubMed
  6. Phys Rev Lett. 2000 Jun 26;84(26 Pt 1):6102-5 - PubMed
  7. Phys Rev Lett. 2003 Jun 27;90(25 Pt 1):257201 - PubMed
  8. Phys Rev Lett. 2004 Jun 18;92(24):247201 - PubMed
  9. Phys Rev Lett. 2005 Oct 28;95(18):187205 - PubMed
  10. Phys Rev Lett. 2007 May 11;98(19):197201 - PubMed
  11. Phys Rev Lett. 2007 Jun 8;98(23):237201 - PubMed
  12. Phys Rev Lett. 2008 Dec 31;101(26):267201 - PubMed
  13. Nat Mater. 2011 May;10(5):347-51 - PubMed
  14. Phys Rev Lett. 2012 Sep 7;109(10):107204 - PubMed
  15. Phys Rev Lett. 2012 Sep 28;109(13):137201 - PubMed
  16. Nat Mater. 2014 Apr;13(4):367-74 - PubMed
  17. J Phys Condens Matter. 2014 Sep 10;26(36):363201 - PubMed
  18. Phys Rev Lett. 2013 Apr 5;110(14):147207 - PubMed
  19. Phys Rev Lett. 2014 Oct 3;113(14):147207 - PubMed
  20. Phys Rev B Condens Matter. 1995 Apr 1;51(13):8276-8286 - PubMed

Publication Types