Display options
Share it on

ACS Appl Mater Interfaces. 2016 Mar 02;8(8):5571-9. doi: 10.1021/acsami.6b00074. Epub 2016 Feb 19.

Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes.

ACS applied materials & interfaces

Marcel Rother, Stefan P Schießl, Yuriy Zakharko, Florentina Gannott, Jana Zaumseil

Affiliations

  1. Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg , D-91058 Erlangen, Germany.
  2. Institute for Physical Chemistry, Universität Heidelberg , D-69120 Heidelberg, Germany.

PMID: 26867006 PMCID: PMC4778158 DOI: 10.1021/acsami.6b00074

Abstract

The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification.

Keywords: electroluminescence; network; photoluminescence; single-walled carbon nanotubes; transport

References

  1. Nanoscale. 2014 Dec 21;6(24):14891-7 - PubMed
  2. ACS Nano. 2012 Jan 24;6(1):539-48 - PubMed
  3. Nanoscale. 2014 Feb 21;6(4):2328-39 - PubMed
  4. J Am Chem Soc. 2012 Sep 5;134(35):14461-6 - PubMed
  5. ACS Nano. 2013 Aug 27;7(8):7428-35 - PubMed
  6. ACS Nano. 2014 Aug 26;8(8):8477-86 - PubMed
  7. Nanoscale. 2015 Oct 14;7(38):15741-7 - PubMed
  8. ACS Nano. 2013 Apr 23;7(4):2971-6 - PubMed
  9. Nano Lett. 2009 May;9(5):1866-71 - PubMed
  10. Adv Mater. 2014 Dec 17;26(47):7986-92 - PubMed
  11. Nano Lett. 2014 Mar 12;14(3):1530-6 - PubMed
  12. ACS Nano. 2014 Jun 24;8(6):5968-78 - PubMed
  13. Adv Mater. 2014 Sep 10;26(34):5969-75 - PubMed
  14. Nat Nanotechnol. 2006 Oct;1(1):60-5 - PubMed
  15. Nano Lett. 2013 Apr 10;13(4):1495-501 - PubMed
  16. ACS Appl Mater Interfaces. 2015 Jan 14;7(1):682-9 - PubMed
  17. Nano Lett. 2008 Aug;8(8):2351-5 - PubMed
  18. Phys Chem Chem Phys. 2015 Mar 14;17(10):6874-80 - PubMed
  19. Chemphyschem. 2013 Jun 3;14(8):1547-52 - PubMed
  20. ACS Nano. 2014 Feb 25;8(2):1817-26 - PubMed
  21. ACS Nano. 2014 Nov 25;8(11):11614-21 - PubMed
  22. J Phys Chem Lett. 2012 May 3;3(9):1169-75 - PubMed
  23. ACS Nano. 2012 Aug 28;6(8):7480-8 - PubMed
  24. Angew Chem Int Ed Engl. 2009;48(41):7655-9 - PubMed
  25. Nano Lett. 2007 Oct;7(10):3080-5 - PubMed
  26. Nat Mater. 2013 Nov;12(11):1038-44 - PubMed
  27. Adv Mater. 2013 Jun 4;25(21):2948-56 - PubMed
  28. Adv Mater. 2015 Mar 4;27(9):1561-6 - PubMed
  29. ACS Nano. 2008 Dec 23;2(12):2445-52 - PubMed
  30. Phys Rev Lett. 2005 Aug 5;95(6):066802 - PubMed
  31. Nat Nanotechnol. 2015 Nov;10(11):944-8 - PubMed
  32. Adv Mater. 2011 Nov 16;23(43):5086-90 - PubMed
  33. ACS Nano. 2010 Aug 24;4(8):4388-95 - PubMed
  34. Nano Lett. 2013;13(11):5425-30 - PubMed
  35. Nat Commun. 2015 Apr 13;6:6732 - PubMed
  36. ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12009-14 - PubMed
  37. Nano Lett. 2006 Jul;6(7):1425-33 - PubMed
  38. ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8441-6 - PubMed
  39. Nano Lett. 2013 May 8;13(5):1996-2003 - PubMed
  40. ACS Nano. 2009 Nov 24;3(11):3744-8 - PubMed
  41. Nat Nanotechnol. 2007 Oct;2(10):640-6 - PubMed
  42. Phys Rev Lett. 2003 Nov 21;91(21):216601 - PubMed

Publication Types