Display options
Share it on

Sci Rep. 2016 Feb 29;6:22267. doi: 10.1038/srep22267.

Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects.

Scientific reports

Chao-Ni He, Wei-Qing Huang, Liang Xu, Yin-Cai Yang, Bing-Xin Zhou, Gui-Fang Huang, P Peng, Wu-Ming Liu

Affiliations

  1. Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China.
  2. School of Materials Science and Engineering, Hunan University, Changsha 410082, China.
  3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

PMID: 26923338 PMCID: PMC4770300 DOI: 10.1038/srep22267

Abstract

The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, demonstrating that the band gap, near-gap electronic structure and interface charge transfer of the doped GR/Ag3PO4(100) composite can be tuned by the dopants. Interestingly, the doping atom and C atoms bonded to dopant become active sites for photocatalysis because they are positively or negatively charged due to the charge redistribution caused by interaction. The dopants can enhance the visible light absorption and photoinduced electron transfer. We propose that the N atom may be one of the most appropriate dopants for the GR/Ag3PO4 photocatalyst. This work can rationalize the available experimental results about N-doped GR-semiconductor composites, and enriches our understanding on the dopant effects in the doped GR-based composites for developing high-performance photocatalysts.

References

  1. Dalton Trans. 2013 Jan 28;42(4):1094-101 - PubMed
  2. J Phys Chem Lett. 2013 Mar 7;4(5):753-9 - PubMed
  3. Science. 2004 Oct 22;306(5696):666-9 - PubMed
  4. Nat Mater. 2013 Sep;12(9):798-801 - PubMed
  5. Angew Chem Int Ed Engl. 2013 Jan 14;52(3):812-47 - PubMed
  6. Nature. 2005 Nov 10;438(7065):197-200 - PubMed
  7. Sci Rep. 2015 Mar 31;5:9561 - PubMed
  8. J Am Chem Soc. 2011 May 4;133(17):6490-2 - PubMed
  9. Nature. 2001 Dec 6;414(6864):625-7 - PubMed
  10. J Phys Chem Lett. 2011 Apr 21;2(8):894-9 - PubMed
  11. ACS Appl Mater Interfaces. 2014 Aug 27;6(16):13798-806 - PubMed
  12. Nat Mater. 2010 Jul;9(7):559-64 - PubMed
  13. J Mol Model. 2014 Feb;20(2):2112 - PubMed
  14. Sci Rep. 2015 Jul 08;5:11612 - PubMed
  15. J Phys Chem Lett. 2012 Mar 1;3(5):663-72 - PubMed
  16. Phys Rev Lett. 2009 Mar 13;102(10):106401 - PubMed
  17. Chemistry. 2013 May 3;19(19):6027-33 - PubMed
  18. Nature. 2007 Mar 1;446(7131):60-3 - PubMed
  19. Adv Mater. 2013 Nov 20;25(43):6291-7 - PubMed
  20. Chem Soc Rev. 2014 Dec 21;43(24):8240-54 - PubMed
  21. J Am Chem Soc. 2013 Jul 17;135(28):10286-9 - PubMed
  22. Nanotechnology. 2013 Aug 2;24(30):305401 - PubMed
  23. Adv Mater. 2012 Jan 10;24(2):229-51 - PubMed
  24. Chemistry. 2014 Dec 22;20(52):17590-6 - PubMed
  25. ACS Nano. 2012 Jan 24;6(1):712-9 - PubMed
  26. J Hazard Mater. 2013 Jan 15;244-245:86-93 - PubMed
  27. Sci Rep. 2014 Sep 11;4:6341 - PubMed
  28. Chem Rev. 2010 Nov 10;110(11):6503-70 - PubMed

Publication Types