Display options
Share it on

Clin Proteomics. 2016 Feb 25;13:4. doi: 10.1186/s12014-016-9104-2. eCollection 2016.

Targeting LAMP2 in human cerebrospinal fluid with a combination of immunopurification and high resolution parallel reaction monitoring mass spectrometry.

Clinical proteomics

Simon Sjödin, Annika Öhrfelt, Gunnar Brinkmalm, Henrik Zetterberg, Kaj Blennow, Ann Brinkmalm

Affiliations

  1. Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden.
  2. Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden ; UCL Institute of Neurology, University College London, London, UK.

PMID: 26924951 PMCID: PMC4768413 DOI: 10.1186/s12014-016-9104-2

Abstract

BACKGROUND: Alzheimer's disease is the most common form of dementia. An increasing body of evidence suggests that endo-lysosomal dysfunction is a pathogenic mechanism of Alzheimer's disease. Thus there is a potential for proteins involved in the normal function of endo-lysosomal vesicles to act as biomarkers of disease. Herein we focused on the lysosomal protein LAMP2 that is involved in chaperone mediated autophagy.

RESULTS: Using a combination of immunoprecipitation, digestion and nano-liquid chromatography tandem mass spectrometry we targeted and identified six tryptic LAMP2 peptides in human cerebrospinal fluid. Employing the identified proteotypic tryptic peptides a hybrid immunoprecipitation high resolution parallel reaction monitoring mass spectrometric method was developed for the relative quantitation of LAMP2. The method was evaluated in a number of experiments which defined the overall methodological as well as the analytical micro-liquid chromatography mass spectrometric intra- and inter-day variability. We identified an overall methodological peptide dependent intra-day variability of 8-16 %. The inter-day experiments showed similar results. The analytical contribution to the variation was minor with a coefficient of variation of 0.5-2.1 %, depending on the peptide. Using the developed method, with defined and limited variability, we report increased cerebrospinal fluid levels of three LAMP2 peptides in Alzheimer's disease subjects (n = 14), as compared to non-Alzheimer's disease controls (n = 14).

CONCLUSION: Altered LAMP2 levels in cerebrospinal fluid may indicate endo-lysosomal dysfunction in Alzheimer's disease. However, further studies in larger cohorts comprised of well-defined patient materials are required. We here present a tool which can be used for exploring the relevance of the level of LAMP2 as a potential measure of lysosomal dysfunction in Alzheimer's disease or other neurodegenerative diseases.

Keywords: Alzheimer’s disease; Biomarker; Cerebrospinal fluid; Endo-lysosomal dysfunction; Immunoprecipitation; LAMP2; Neurodegenerative diseases; Parallel reaction monitoring

References

  1. Nat Neurosci. 2010 Jul;13(7):805-11 - PubMed
  2. Neurochem Res. 2000 Oct;25(9-10):1161-72 - PubMed
  3. J Neurosci. 1997 Aug 15;17(16):6142-51 - PubMed
  4. Neurobiol Aging. 2004 Nov-Dec;25(10):1263-72 - PubMed
  5. J Biol Chem. 2000 Oct 6;275(40):31505-13 - PubMed
  6. Nat Biotechnol. 2009 Jul;27(7):633-41 - PubMed
  7. J Biol Chem. 2008 Aug 29;283(35):23731-8 - PubMed
  8. Brain Res. 1994 Mar 21;640(1-2):68-80 - PubMed
  9. Neuron. 1995 Mar;14(3):671-80 - PubMed
  10. Mol Neurodegener. 2012 Nov 22;7:59 - PubMed
  11. Ann Neurol. 2009 Apr;65(4):403-13 - PubMed
  12. Science. 1992 Apr 10;256(5054):184-5 - PubMed
  13. Neurobiol Aging. 1998 Mar-Apr;19(2):109-16 - PubMed
  14. J Cell Sci. 2007 Mar 1;120(Pt 5):782-91 - PubMed
  15. J Proteome Res. 2013 May 3;12(5):2128-37 - PubMed
  16. Nat Neurosci. 2013 Apr;16(4):394-406 - PubMed
  17. Nat Methods. 2012 May 30;9(6):555-66 - PubMed
  18. Hum Mol Genet. 2009 Nov 1;18(21):4153-70 - PubMed
  19. Biochem Biophys Res Commun. 1984 May 16;120(3):885-90 - PubMed
  20. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4913-7 - PubMed
  21. Lancet Neurol. 2014 Jun;13(6):614-29 - PubMed
  22. Mol Cell Proteomics. 2012 Nov;11(11):1475-88 - PubMed
  23. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4245-9 - PubMed
  24. J Neurosci. 2011 Dec 14;31(50):18492-505 - PubMed
  25. Nat Rev Neurol. 2010 Mar;6(3):131-44 - PubMed
  26. Lancet Neurol. 2006 Mar;5(3):228-34 - PubMed
  27. J Biol Chem. 2008 Aug 29;283(35):23542-56 - PubMed
  28. Neuromolecular Med. 2014 Mar;16(1):150-60 - PubMed
  29. Cold Spring Harb Perspect Med. 2012 Sep 01;2(9):a006221 - PubMed
  30. Neurobiol Dis. 2011 Jul;43(1):29-37 - PubMed
  31. Arch Neurol. 2010 Dec;67(12):1464-72 - PubMed
  32. J Neuropathol Exp Neurol. 2005 Feb;64(2):113-22 - PubMed
  33. Mol Cell Proteomics. 2011 Sep;10(9):M111.011015 - PubMed
  34. J Alzheimers Dis. 2010;22(2):631-9 - PubMed
  35. Cold Spring Harb Perspect Med. 2012 Aug 01;2(8):null - PubMed
  36. Nat Med. 2013 Aug;19(8):983-97 - PubMed
  37. Dement Geriatr Cogn Disord. 2013;36(1-2):99-110 - PubMed
  38. Nature. 2008 Feb 28;451(7182):1069-75 - PubMed
  39. Proc Natl Acad Sci U S A. 1990 May;87(10):3861-5 - PubMed
  40. Acta Biochim Biophys Sin (Shanghai). 2014 Feb;46(2):83-91 - PubMed
  41. Cell Res. 2014 Jan;24(1):92-104 - PubMed
  42. J Biol Chem. 2010 Apr 30;285(18):13621-9 - PubMed
  43. Mol Neurodegener. 2014 Nov 23;9:53 - PubMed
  44. J Proteomics. 2013 Apr 9;81:148-58 - PubMed
  45. Annu Rev Neurosci. 2014;37:55-78 - PubMed
  46. J Cell Biol. 2005 Oct 10;171(1):87-98 - PubMed
  47. J Chem Neuroanat. 2011 Oct;42(2):102-10 - PubMed
  48. Mol Cell Proteomics. 2014 Oct;13(10):2584-92 - PubMed

Publication Types