Display options
Share it on

Front Plant Sci. 2016 Feb 17;7:144. doi: 10.3389/fpls.2016.00144. eCollection 2016.

Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria.

Frontiers in plant science

Tahir Naqqash, Sohail Hameed, Asma Imran, Muhammad Kashif Hanif, Afshan Majeed, Jan Dirk van Elsas

Affiliations

  1. National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan; Pakistan Institute of Engineering and Applied SciencesIslamabad, Pakistan.
  2. National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan.
  3. National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan; University of PoonchRawlakot, Pakistan.
  4. Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands.

PMID: 26925072 PMCID: PMC4756182 DOI: 10.3389/fpls.2016.00144

Abstract

Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen), five bacteria, i.e., Azospirillum sp. TN10, Agrobacterium sp. TN14, Pseudomonas sp. TN36, Enterobacter sp. TN38 and Rhizobium sp. TN42 were isolated from the potato rhizosphere on nitrogen-free malate medium and identified based on their 16S rRNA gene sequences. Three strains, i.e., TN10, TN38, and TN42 showed nitrogen fixation (92.67-134.54 nmol h(-1)mg(-1) protein), while all showed the production of indole-3-acetic acid (IAA), which was significantly increased by the addition of L-tryptophan. Azospirillum sp. TN10 produced the highest amount of IAA, as measured by spectrophotometry (312.14 μg mL(-1)) and HPLC (18.3 μg mL(-1)). Inoculation with these bacteria under axenic conditions resulted in differential growth responses of potato. Azospirillum sp. TN10 incited the highest increase in potato fresh and dry weight over control plants, along with increased N contents of shoot and roots. All strains were able to colonize and maintain their population densities in the potato rhizosphere for up to 60 days, with Azospirillum sp. and Rhizobium sp. showing the highest survival. Plant root colonization potential was analyzed by transmission electron microscopy of root sections inoculated with Azospirillum sp. TN10. Of the five test strains, Azospirillum sp. TN10 has the greatest potential to increase the growth and nitrogen uptake of potato. Hence, it is suggested as a good candidate for the production of potato biofertilizer for integrated nutrient management.

Keywords: Azospirillum; IAA; N2-fixation; PGPR; TEM; plant inoculation; potato

References

  1. FEMS Microbiol Lett. 2003 Sep 12;226(1):23-30 - PubMed
  2. FEMS Microbiol Rev. 2000 Oct;24(4):487-506 - PubMed
  3. Appl Environ Microbiol. 1998 Oct;64(10):3860-8 - PubMed
  4. Antonie Van Leeuwenhoek. 2010 Mar;97(3):241-51 - PubMed
  5. Res Microbiol. 2002 Nov;153(9):579-84 - PubMed
  6. Microbiol Res. 2014 May-Jun;169(5-6):325-36 - PubMed
  7. Front Microbiol. 2015 Jun 09;6:583 - PubMed
  8. Nature. 2002 Aug 8;418(6898):671-7 - PubMed
  9. J Adv Res. 2014 Jan;5(1):41-8 - PubMed
  10. Science. 2008 May 16;320(5878):889-92 - PubMed
  11. World J Microbiol Biotechnol. 2012 Apr;28(4):1327-50 - PubMed
  12. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  13. Front Microbiol. 2015 Mar 17;6:198 - PubMed
  14. J Bacteriol. 1991 Jan;173(2):697-703 - PubMed
  15. Environ Microbiol. 2004 Dec;6(12):1244-51 - PubMed
  16. Appl Environ Microbiol. 1977 Jan;33(1):85-8 - PubMed
  17. Curr Microbiol. 2011 Mar;62(3):821-5 - PubMed
  18. Plant Physiol. 1968 Aug;43(8):1185-207 - PubMed
  19. FEMS Microbiol Rev. 2007 Jul;31(4):425-48 - PubMed
  20. Indian J Exp Biol. 2009 Dec;47(12):993-1000 - PubMed
  21. Appl Environ Microbiol. 2009 Apr;75(8):2253-8 - PubMed
  22. Appl Environ Microbiol. 1991 Nov;57(11):3278-86 - PubMed
  23. Appl Environ Microbiol. 1979 May;37(5):1016-24 - PubMed
  24. Syst Appl Microbiol. 2013 Mar;36(2):116-27 - PubMed
  25. Appl Environ Microbiol. 2015 Feb;81(3):821-30 - PubMed
  26. Microbiol Res. 2005;160(2):127-33 - PubMed
  27. FEMS Microbiol Ecol. 2011 Jul;77(1):57-68 - PubMed
  28. Braz J Microbiol. 2010 Oct;41(4):899-906 - PubMed
  29. Microb Ecol. 2006 Apr;51(3):326-35 - PubMed
  30. Appl Environ Microbiol. 2009 Jun;75(11):3396-406 - PubMed
  31. FEMS Microbiol Ecol. 2008 May;64(2):283-96 - PubMed
  32. World J Microbiol Biotechnol. 2012 Aug;28(8):2749-58 - PubMed
  33. Res Microbiol. 2001 Jan-Feb;152(1):95-103 - PubMed

Publication Types