Display options
Share it on

Front Plant Sci. 2016 Feb 18;7:173. doi: 10.3389/fpls.2016.00173. eCollection 2016.

Global Metabolic Profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4) Loss-of-Function Mutants Exhibiting Delayed Dark-Induced Senescence.

Frontiers in plant science

Miren I Sequera-Mutiozabal, Alexander Erban, Joachim Kopka, Kostadin E Atanasov, Jaume Bastida, Vasileios Fotopoulos, Rubén Alcázar, Antonio F Tiburcio

Affiliations

  1. Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona Barcelona, Spain.
  2. Max-Planck-Institut für Molekulare Pflanzenphysiologie Potsdam-Golm, Germany.
  3. Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.

PMID: 26925084 PMCID: PMC4757743 DOI: 10.3389/fpls.2016.00173

Abstract

Early and more recent studies have suggested that some polyamines (PAs), and particularly spermine (Spm), exhibit anti-senescence properties in plants. In this work, we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4), encoding a PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4 (pao4-1 and pao4-2) loss-of-function mutants have been found that accumulate 10-fold higher Spm, and this associated with delayed entry into senescence under dark conditions. Mechanisms underlying pao4 delayed senescence have been studied using global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher levels of important metabolites involved in redox regulation, central metabolism and signaling that support a priming status against oxidative stress. During senescence, interactions between PAs and oxidative, sugar and nitrogen metabolism have been detected that additively contribute to delayed entry into senescence. Our results indicate the occurrence of metabolic interactions between PAs, particularly Spm, with cell oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with oxidative damage produced during senescence.

Keywords: Arabidopsis; oxidative stress; polyamine oxidases; polyamines; senescence; spermine

References

  1. J Biosci. 2000 Sep;25(3):291-9 - PubMed
  2. J Biol Chem. 2001 Jan 26;276(4):2616-21 - PubMed
  3. Plant Cell Physiol. 2002 Feb;43(2):196-206 - PubMed
  4. Plant Physiol. 2002 Apr;128(4):1455-69 - PubMed
  5. Biotechniques. 2003 Feb;34(2):374-8 - PubMed
  6. Plant Physiol. 2003 Jun;132(2):453-60 - PubMed
  7. J Biol Chem. 2003 Dec 5;278(49):49102-12 - PubMed
  8. Trends Cell Biol. 2003 Dec;13(12):607-10 - PubMed
  9. Plant J. 2004 Nov;40(4):586-95 - PubMed
  10. J Exp Bot. 2005 Feb;56(412):695-702 - PubMed
  11. Bioinformatics. 2005 Apr 15;21(8):1635-8 - PubMed
  12. Plant J. 2005 May;42(4):567-85 - PubMed
  13. Plant Physiol. 2005 Jun;138(2):898-908 - PubMed
  14. Plant Cell. 2005 Sep;17(9):2587-600 - PubMed
  15. J Exp Bot. 2005 Dec;56(422):3223-8 - PubMed
  16. Trends Plant Sci. 2006 Feb;11(2):80-8 - PubMed
  17. Plant Physiol. 2006 Jun;141(2):776-92 - PubMed
  18. Electrophoresis. 2006 Jul;27(13):2782-6 - PubMed
  19. Genome Biol. 2006;7(8):R76 - PubMed
  20. Methods Mol Biol. 2007;358:19-38 - PubMed
  21. Planta. 2007 May;225(6):1597-602 - PubMed
  22. Plant J. 2007 Mar;49(5):878-88 - PubMed
  23. Biochim Biophys Acta. 2007 Apr;1767(4):261-71 - PubMed
  24. Nat Protoc. 2006;1(1):387-96 - PubMed
  25. Bioinformatics. 2008 Mar 1;24(5):732-7 - PubMed
  26. J Exp Bot. 2008;59(4):815-25 - PubMed
  27. Plant Cell. 2008 Jun;20(6):1708-24 - PubMed
  28. Plant Cell Physiol. 2008 Sep;49(9):1272-82 - PubMed
  29. Plant Physiol. 2008 Nov;148(3):1603-13 - PubMed
  30. J Plant Physiol. 2009 Apr 1;166(6):626-43 - PubMed
  31. Plant Cell Environ. 2009 Jul;32(7):859-74 - PubMed
  32. Amino Acids. 2010 Apr;38(4):1117-29 - PubMed
  33. Plant Physiol. 2009 Dec;151(4):2083-94 - PubMed
  34. Mol Plant. 2009 May;2(3):390-406 - PubMed
  35. Ann Bot. 2010 Jan;105(1):1-6 - PubMed
  36. Amino Acids. 2010 Feb;38(2):405-13 - PubMed
  37. Plant Physiol Biochem. 2010 Jul;48(7):560-4 - PubMed
  38. Planta. 2010 May;231(6):1237-49 - PubMed
  39. J Integr Plant Biol. 2010 Apr;52(4):400-9 - PubMed
  40. Plant Physiol Biochem. 2010 Jul;48(7):602-11 - PubMed
  41. Trends Plant Sci. 2010 Jul;15(7):409-17 - PubMed
  42. Plant Cell. 2010 May;22(5):1549-63 - PubMed
  43. Metabolomics. 2010 Jun;6(2):322-333 - PubMed
  44. Plant Cell Rep. 2010 Sep;29(9):955-65 - PubMed
  45. J Exp Bot. 2010 Aug;61(13):3813-25 - PubMed
  46. Plant Cell. 2010 Jul;22(7):2459-75 - PubMed
  47. J Exp Bot. 2011 Jan;62(3):1155-68 - PubMed
  48. Phytochemistry. 2011 Jul;72(10):1081-91 - PubMed
  49. Plant Physiol. 2011 Jan;155(1):2-18 - PubMed
  50. Plant Signal Behav. 2011 Feb;6(2):210-4 - PubMed
  51. Trends Plant Sci. 2011 Sep;16(9):489-98 - PubMed
  52. Amino Acids. 2012 Feb;42(2-3):867-76 - PubMed
  53. Protoplasma. 2012 Jul;249(3):469-81 - PubMed
  54. Amino Acids. 2012 Feb;42(2-3):831-41 - PubMed
  55. Amino Acids. 2012 Feb;42(2-3):411-26 - PubMed
  56. Methods Enzymol. 2011;500:299-336 - PubMed
  57. New Phytol. 2011 Dec;192(4):823-39 - PubMed
  58. Plant Signal Behav. 2011 Nov;6(11):1844-7 - PubMed
  59. Plant Cell Rep. 2012 Jun;31(6):1073-84 - PubMed
  60. Curr Opin Plant Biol. 2012 Apr;15(2):177-84 - PubMed
  61. J Integr Plant Biol. 2012 Aug;54(8):516-25 - PubMed
  62. Plant J. 2012 Nov;72(4):585-99 - PubMed
  63. Plant Sci. 2012 Sep;193-194:130-5 - PubMed
  64. J Exp Bot. 2012 Sep;63(14):5003-15 - PubMed
  65. Free Radic Biol Med. 2013 Mar;56:172-83 - PubMed
  66. Mol Plant. 2013 Mar;6(2):261-74 - PubMed
  67. J Exp Bot. 2013 Jan;64(2):433-43 - PubMed
  68. Plant Physiol. 2013 Mar;161(3):1158-71 - PubMed
  69. J Exp Bot. 2013 Apr;64(6):1509-20 - PubMed
  70. PLoS One. 2013;8(2):e56345 - PubMed
  71. Plant Physiol. 2013 Jul;162(3):1290-310 - PubMed
  72. Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):E2950-7 - PubMed
  73. Plant Physiol Biochem. 2013 Dec;73:154-60 - PubMed
  74. Plant Cell Environ. 2014 Apr;37(4):864-85 - PubMed
  75. Plant Cell. 2013 Nov;25(11):4580-95 - PubMed
  76. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 - PubMed
  77. J Exp Bot. 2014 Mar;65(5):1285-96 - PubMed
  78. Ann Bot. 2014 Jan;113(1):87-96 - PubMed
  79. J Integr Plant Biol. 2014 Feb;56(2):114-21 - PubMed
  80. Planta. 2014 Jul;240(1):1-18 - PubMed
  81. Physiol Mol Biol Plants. 2014 Apr;20(2):151-9 - PubMed
  82. Front Plant Sci. 2014 Apr 07;5:120 - PubMed
  83. Antioxid Redox Signal. 2014 Sep 20;21(9):1289-304 - PubMed
  84. Front Plant Sci. 2014 May 05;5:175 - PubMed
  85. Plant Physiol. 2014 Jun 6;165(4):1575-1590 - PubMed
  86. Arabidopsis Book. 2014 Jun 13;12:e0173 - PubMed
  87. Metabolites. 2012 Aug 20;2(3):516-28 - PubMed
  88. Amino Acids. 2015 Jan;47(1):27-44 - PubMed
  89. PLoS One. 2014 Nov 24;9(11):e112893 - PubMed
  90. Front Plant Sci. 2015 Feb 12;6:67 - PubMed
  91. Biochem J. 1989 May 15;260(1):1-10 - PubMed
  92. Planta. 2017 Jun;245(6):1067 - PubMed
  93. J Chromatogr B Biomed Appl. 1995 Apr 21;666(2):329-35 - PubMed
  94. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 - PubMed

Publication Types