Display options
Share it on

Stem Cells Int. 2016;2016:5303048. doi: 10.1155/2016/5303048. Epub 2016 Jan 26.

Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment.

Stem cells international

Morgan T Sutton, David Fletcher, Santosh K Ghosh, Aaron Weinberg, Rolf van Heeckeren, Sukhmani Kaur, Zhina Sadeghi, Adonis Hijaz, Jane Reese, Hillard M Lazarus, Donald P Lennon, Arnold I Caplan, Tracey L Bonfield

Affiliations

  1. Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; National Center of Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
  2. Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA.
  3. School of Dentistry, Case Western Reserve University, Cleveland, OH 44106, USA.
  4. Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA.
  5. National Center of Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Cancer Biology, Case Western Reserve University, Cleveland, OH 44106, USA; CTSC Cell Therapy Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA.
  6. National Center of Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; Skeletal Research Center, Case Western Reserve University, Cleveland, OH 44106, USA.

PMID: 26925108 PMCID: PMC4746399 DOI: 10.1155/2016/5303048

Abstract

Cystic fibrosis (CF) is a genetic disease in which the battle between pulmonary infection and inflammation becomes the major cause of morbidity and mortality. We have previously shown that human MSCs (hMSCs) decrease inflammation and infection in the in vivo murine model of CF. The studies in this paper focus on the specificity of the hMSC antimicrobial effectiveness using Pseudomonas aeruginosa (gram negative bacteria) and Staphylococcus aureus (gram positive bacteria). Our studies show that hMSCs secrete bioactive molecules which are antimicrobial in vitro against Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumonia, impacting the rate of bacterial growth and transition into colony forming units regardless of the pathogen. Further, we show that the hMSCs have the capacity to enhance antibiotic sensitivity, improving the capacity to kill bacteria. We present data which suggests that the antimicrobial effectiveness is associated with the capacity to slow bacterial growth and the ability of the hMSCs to secrete the antimicrobial peptide LL-37. Lastly, our studies demonstrate that the tissue origin of the hMSCs (bone marrow or adipose tissue derived), the presence of functional cystic fibrosis transmembrane conductance regulator (CFTR: human, Cftr: mouse) activity, and response to effector cytokines can impact both hMSC phenotype and antimicrobial potency and efficacy. These studies demonstrate, the unique capacity of the hMSCs to manage different pathogens and the significance of their phenotype in both the antimicrobial and antibiotic enhancing activities.

References

  1. Peptides. 2010 Feb;31(2):195-201 - PubMed
  2. Peptides. 2010 Sep;31(9):1791-8 - PubMed
  3. J Cell Biochem. 2006 Aug 1;98(5):1076-84 - PubMed
  4. J Inflamm (Lond). 2010 Oct 25;7:51 - PubMed
  5. Treat Respir Med. 2005;4(4):255-73 - PubMed
  6. Gene Ther. 2008 Jan;15(2):109-16 - PubMed
  7. Clin Chest Med. 2007 Jun;28(2):331-46 - PubMed
  8. J Pathol. 2009 Jan;217(2):318-24 - PubMed
  9. Clin Rev Allergy Immunol. 2008 Dec;35(3):135-53 - PubMed
  10. Stem Cells. 2015 Feb;33(2):601-14 - PubMed
  11. N Engl J Med. 2005 Oct 6;353(14):1443-53 - PubMed
  12. Clin Chem. 2007 Apr;53(4):757-65 - PubMed
  13. Cell Death Dis. 2013 Apr 04;4:e571 - PubMed
  14. PLoS One. 2011;6(10):e26525 - PubMed
  15. Chest. 2005 Jun;127(6):1882-5 - PubMed
  16. J Transl Med. 2011 May 05;9:51 - PubMed
  17. Curr Pharm Des. 2008;14(19):1870-81 - PubMed
  18. Virulence. 2011 Sep-Oct;2(5):445-59 - PubMed
  19. Genet Epidemiol. 2002 Jun;23(1):21-36 - PubMed
  20. J Cyst Fibros. 2004 Mar;3(1):45-50 - PubMed
  21. BMJ. 2007 Oct 27;335(7625):879-83 - PubMed
  22. Proc Am Thorac Soc. 2007 Aug 1;4(4):406-17 - PubMed
  23. J Immunol. 2012 Jul 1;189(1):304-11 - PubMed
  24. PLoS One. 2013 Dec 13;8(12):e82240 - PubMed
  25. PLoS One. 2012;7(12):e52330 - PubMed
  26. Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L851-61 - PubMed
  27. AAPS J. 2015 May;17(3):620-30 - PubMed
  28. J Clin Invest. 1997 Dec 1;100(11):2810-5 - PubMed
  29. Am J Respir Crit Care Med. 2006 Oct 1;174(7):780-6 - PubMed
  30. J Immunol. 2011 May 1;186(9):5497-505 - PubMed
  31. Crit Care Med. 2010 Oct;38(10 Suppl):S569-73 - PubMed
  32. Proc Am Thorac Soc. 2006 May;3(3):193-207 - PubMed
  33. J Clin Microbiol. 2014 Jun;52(6):2172-4 - PubMed
  34. Am J Reprod Immunol. 2012 Jan;67(1):1-8 - PubMed
  35. Ann Agric Environ Med. 2007;14(1):1-4 - PubMed
  36. Exp Hematol. 2006 Nov;34(11):1604-5 - PubMed
  37. Am Rev Respir Dis. 1979 Mar;119(3):453-9 - PubMed
  38. Stem Cells. 2010 Dec;28(12 ):2229-38 - PubMed
  39. Am J Respir Cell Mol Biol. 1999 Feb;20(2):279-86 - PubMed

Publication Types