Display options
Share it on

Cardiol Res Pract. 2016;2016:5191683. doi: 10.1155/2016/5191683. Epub 2016 Jan 26.

L-Type Calcium Channels Do Not Play a Critical Role in Chest Blow Induced Ventricular Fibrillation: Commotio Cordis.

Cardiology research and practice

Christopher Madias, Ann C Garlitski, John Kalin, Mark S Link

Affiliations

  1. Cardiac Electrophysiology Service, Section of Cardiology, Rush University Medical Center, Chicago, IL, USA.
  2. Cardiac Arrhythmia Center, Division of Cardiology, Tufts Medical Center (TMC), P.O. Box 197, 800 Washington Street, Boston, MA 02111, USA.

PMID: 26925288 PMCID: PMC4746352 DOI: 10.1155/2016/5191683

Abstract

Background. In a commotio cordis swine model, ventricular fibrillation (VF) can be induced by a ball blow to the chest believed secondary to activation of mechanosensitive ion channels. The purpose of the current study is to evaluate whether stretch induced activation of the L-type calcium channel may cause intracellular calcium overload and underlie the VF in commotio cordis. Method and Results. Anesthetized juvenile swine received 6 chest wall strikes with a 17.9 m/s lacrosse ball timed to the vulnerable period for VF induction. Animals were randomized to IV verapamil (n = 6) or placebo (n = 6). There was no difference in the observed frequency of VF between verapamil (19/26: 73%) and placebo (20/36: 56%) treated animals (p = 0.16). There was also no significant difference in the combined endpoint of VF or nonsustained VF (21/26: 81% in verapamil versus 24/36: 67% in controls, p = 0.22). Conclusions. In this experimental model of commotio cordis, verapamil did not prevent VF induction. Thus, in commotio cordis it is unlikely that stretch activation of the L-type calcium channel with resultant intracellular calcium overload plays a prominent role.

References

  1. Pharmacol Ther. 2006 Apr;110(1):1-13 - PubMed
  2. Chest. 1998 Jul;114(1):326-8 - PubMed
  3. Pediatrics. 2002 May;109(5):873-7 - PubMed
  4. J Cardiovasc Electrophysiol. 2005 Apr;16(4):433-8 - PubMed
  5. N Engl J Med. 1998 Jun 18;338(25):1805-11 - PubMed
  6. Biophys J. 1990 Aug;58(2):471-81 - PubMed
  7. J Electrocardiol. 2011 Nov-Dec;44(6):650-5 - PubMed
  8. Biochem Biophys Res Commun. 2003 Oct 17;310(2):405-11 - PubMed
  9. Circ Res. 1996 Apr;78(4):650-9 - PubMed
  10. Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):3-9 - PubMed
  11. J Cardiovasc Electrophysiol. 2007 Jan;18(1):115-22 - PubMed
  12. Jpn Heart J. 1997 Mar;38(2):237-51 - PubMed
  13. Circulation. 1999 Jul 27;100(4):413-8 - PubMed
  14. Am Heart J. 1978 Jul;96(1):81-6 - PubMed
  15. J Am Coll Cardiol. 2003 Jan 1;41(1):99-104 - PubMed
  16. J Cardiovasc Electrophysiol. 2008 Dec;19(12):1304-9 - PubMed
  17. Heart Vessels. 1997;12(3):128-35 - PubMed
  18. J Cardiovasc Electrophysiol. 2011 Mar;22(3):316-24 - PubMed
  19. Circulation. 1988 Jul;78(1):227-32 - PubMed
  20. Heart Rhythm. 2007 Sep;4(9):1149-54 - PubMed
  21. N Engl J Med. 2010 Mar 11;362(10):917-27 - PubMed
  22. J Am Coll Cardiol. 1985 Sep;6(3):674-81 - PubMed
  23. Circ Res. 1991 Sep;69(3):820-31 - PubMed
  24. J Am Coll Cardiol. 2001 Feb;37(2):649-54 - PubMed
  25. Eur J Pharmacol. 1984 Jan 13;97(1-2):95-103 - PubMed
  26. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8089-96; discussion 8086-8 - PubMed
  27. Heart Rhythm. 2006 Aug;3(8):967-70 - PubMed

Publication Types