Display options
Share it on

Onco Targets Ther. 2016 Feb 12;9:745-54. doi: 10.2147/OTT.S94374. eCollection 2016.

Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers.

OncoTargets and therapy

Halil Kunt, İhsan Şentürk, Yücel Gönül, Mehmet Korkmaz, Ahmet Ahsen, Ömer Hazman, Ahmet Bal, Abdurrahman Genç, Ahmet Songur

Affiliations

  1. Department of Science Education, Faculty of Education, Dumlup?nar University, Kütahya, Turkey.
  2. Department of Orthopedics and Traumatology, Afyonkarahisar, Turkey.
  3. Department of Anatomy, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.
  4. Department of Radiology, Faculty of Medicine, Dumlup?nar University, Kütahya, Turkey.
  5. Department of Nephrology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.
  6. Department of Biochemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey.
  7. Department of General Surgery, Afyon Kocatepe University, Afyonkarahisar, Turkey.
  8. Department of Physiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.

PMID: 26929645 PMCID: PMC4758783 DOI: 10.2147/OTT.S94374

Abstract

BACKGROUND: In the literature, some articles report that the incidence of numerous diseases increases among the individuals who live around high-voltage electric transmission lines (HVETL) or are exposed vocationally. However, it was not investigated whether HVETL affect bone metabolism, oxidative stress, and the prevalence of thyroid nodule.

METHODS: Dual-energy X-ray absorptiometry (DEXA) bone density measurements, serum free triiodothyronine (FT3), free thyroxine (FT4), RANK, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), phosphor, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were analyzed to investigate this effect.

RESULTS: Bone mineral density levels of L1-L4 vertebrae and femur were observed significantly lower in the electrical workers. ALP, phosphor, RANK, RANKL, TOS, OSI, and anteroposterior diameter of the left thyroid lobe levels were significantly higher, and OPG, TAS, and FT4 levels were detected significantly lower in the study group when compared with the control group.

CONCLUSION: Consequently, it was observed that the balance between construction and destruction in the bone metabolism of the electrical workers who were employed in HVETL replaced toward destruction and led to a decrease in OPG levels and an increase in RANK and RANKL levels. In line with the previous studies, long-term exposure to an electromagnetic field causes disorders in many organs and systems. Thus, it is considered that long-term exposure to an electromagnetic field affects bone and thyroid metabolism and also increases OSI by increasing the TOS and decreasing the antioxidant status.

Keywords: RANK; RANKL; bone mineral density; electrical workers; electromagnetic radiation; thyroid

References

  1. Chir Organi Mov. 1994 Jul-Sep;79(3):309-13 - PubMed
  2. J Craniofac Surg. 2009 Sep;20(5):1556-60 - PubMed
  3. J Cell Biochem. 2006 Sep 1;99(1):168-77 - PubMed
  4. Calcif Tissue Int. 2002 Jun;70(6):496-502 - PubMed
  5. J Cell Physiol. 2002 Jul;192(1):16-22 - PubMed
  6. Biochem Biophys Res Commun. 2002 Oct 18;298(1):95-102 - PubMed
  7. Kosm Biol Aviakosm Med. 1990 Mar-Apr;24(2):56-60 - PubMed
  8. J Exp Med. 1997 Dec 15;186(12):2075-80 - PubMed
  9. J Immunol. 2001 Feb 1;166(3):1482-91 - PubMed
  10. J Biol Chem. 1998 Oct 23;273(43):28355-9 - PubMed
  11. Int J Immunopathol Pharmacol. 2004 May-Aug;17(2 Suppl):31-6 - PubMed
  12. N Engl J Med. 1976 May 6;294(19):1019-25 - PubMed
  13. Med Pregl. 2001 Mar-Apr;54(3-4):119-27 - PubMed
  14. Bioelectromagnetics. 2001 Oct;22(7):503-10 - PubMed
  15. J Huazhong Univ Sci Technolog Med Sci. 2005;25(2):185-7 - PubMed
  16. Cell. 1997 Apr 18;89(2):309-19 - PubMed
  17. J Orthop Res. 2005 Nov;23(6):1308-14 - PubMed
  18. Biochim Biophys Acta. 2000 Dec 11;1499(1-2):101-108 - PubMed
  19. Bioelectromagnetics. 2009 May;30(4):299-306 - PubMed
  20. Gen Physiol Biophys. 2006 Jun;25(2):177-93 - PubMed
  21. J Cell Biol. 1999 May 3;145(3):527-38 - PubMed
  22. J Spinal Cord Med. 1999 Winter;22(4):239-45 - PubMed
  23. Nature. 1997 Nov 13;390(6656):175-9 - PubMed
  24. Int J Radiat Biol. 2008 Aug;84(8):669-80 - PubMed
  25. Bioelectromagnetics. 1998;19(5):271-8 - PubMed
  26. Foot Ankle Clin. 2005 Dec;10(4):579-93, vii - PubMed
  27. Scand J Work Environ Health. 2006 Aug;32(4):276-84 - PubMed
  28. J Exp Med. 2000 Aug 21;192(4):463-74 - PubMed
  29. Bioelectromagnetics. 2006 Sep;27(6):473-8 - PubMed
  30. Bioelectromagnetics. 2004 Feb;25(2):118-26 - PubMed
  31. Genes Dev. 1998 May 1;12(9):1260-8 - PubMed
  32. Biull Eksp Biol Med. 1978 Nov;86(11):544-6 - PubMed
  33. Cell. 2000 Sep 29;103(1):41-50 - PubMed
  34. Bioelectromagnetics. 2003 Apr;24(3):189-98 - PubMed
  35. Radiat Res. 1985 Mar;101(3):413-23 - PubMed
  36. Cancer Causes Control. 2001 Oct;12(8):683-9 - PubMed
  37. J Bone Miner Metab. 2002;20(6):345-9 - PubMed
  38. J Biol Chem. 1998 Aug 7;273(32):20551-5 - PubMed
  39. Health Phys. 1998 Apr;74(4):494-522 - PubMed
  40. Indian J Biochem Biophys. 2008 Oct;45(5):326-31 - PubMed
  41. Nature. 1999 Nov 18;402(6759):304-9 - PubMed
  42. Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S205-15 - PubMed
  43. Comput Methods Programs Biomed. 2007 Apr;86(1):1-9 - PubMed
  44. Radiat Res. 2008 Mar;169(3):337-43 - PubMed
  45. Toxicol Appl Pharmacol. 2000 Feb 1;162(3):166-76 - PubMed
  46. J Vet Med A Physiol Pathol Clin Med. 2002 Feb;49(1):33-7 - PubMed
  47. Bioelectromagnetics. 2002 May;23(4):298-305 - PubMed
  48. Int J Cancer. 2001 Mar 1;91(5):728-35 - PubMed
  49. Occup Environ Med. 2000 Apr;57(4):258-63 - PubMed
  50. J Pharm Biomed Anal. 2001 Nov;26(4):605-8 - PubMed
  51. Br J Cancer. 2000 Sep;83(5):692-8 - PubMed
  52. J Musculoskelet Neuronal Interact. 2005 Oct-Dec;5(4):388-92 - PubMed
  53. Life Sci. 1997;61(5):473-86 - PubMed
  54. BMJ. 2005 Jun 4;330(7503):1290 - PubMed

Publication Types