Display options
Share it on

Sci Rep. 2016 Mar 14;6:22797. doi: 10.1038/srep22797.

Magneto-optical imaging of thin magnetic films using spins in diamond.

Scientific reports

David A Simpson, Jean-Philippe Tetienne, Julia M McCoey, Kumaravelu Ganesan, Liam T Hall, Steven Petrou, Robert E Scholten, Lloyd C L Hollenberg

Affiliations

  1. School of Physics, University of Melbourne, Parkville, 3052, Australia.
  2. Centre for Neural Engineering, University of Melbourne, Parkville, 3052, Australia.
  3. Centre for Quantum Computation and Communication Technology, University of Melbourne, Parkville, 3052, Australia.
  4. Florey Neuroscience Institute, University of Melbourne, Parkville, 3052, Australia.
  5. Centre for Integrated Brain Function, University of Melbourne, Parkville, Victoria, Australia.

PMID: 26972730 PMCID: PMC4789603 DOI: 10.1038/srep22797

Abstract

Imaging the fields of magnetic materials provides crucial insight into the physical and chemical processes surrounding magnetism, and has been a key ingredient in the spectacular development of magnetic data storage. Existing approaches using the magneto-optic Kerr effect, x-ray and electron microscopy have limitations that constrain further development, and there is increasing demand for imaging and characterisation of magnetic phenomena in real time with high spatial resolution. Here we show how the magneto-optical response of an array of negatively-charged nitrogen-vacancy spins in diamond can be used to image and map the sub-micron stray magnetic field patterns from thin ferromagnetic films. Using optically detected magnetic resonance, we demonstrate wide-field magnetic imaging over 100 × 100 μm(2) with sub-micron spatial resolution at video frame rates, under ambient conditions. We demonstrate an all-optical spin relaxation contrast imaging approach which can image magnetic structures in the absence of an applied microwave field. Straightforward extensions promise imaging with sub-μT sensitivity and sub-optical spatial and millisecond temporal resolution. This work establishes practical diamond-based wide-field microscopy for rapid high-sensitivity characterisation and imaging of magnetic samples, with the capability for investigating magnetic phenomena such as domain wall and skyrmion dynamics and the spin Hall effect in metals.

References

  1. Phys Rev Lett. 2007 Apr 13;98(15):156601 - PubMed
  2. Rev Sci Instrum. 2010 Apr;81(4):043705 - PubMed
  3. Nat Nanotechnol. 2012 May;7(5):320-4 - PubMed
  4. Sci Rep. 2012;2:401 - PubMed
  5. Science. 2000 Aug 11;289(5481):930-2 - PubMed
  6. Nano Lett. 2013 Sep 11;13(9):4093-8 - PubMed
  7. Nat Methods. 2015 Aug;12(8):736-8 - PubMed
  8. Nat Commun. 2013;4:1607 - PubMed
  9. Science. 2015 Jul 17;349(6245):283-6 - PubMed
  10. Nature. 2008 Oct 2;455(7213):648-51 - PubMed
  11. Nat Nanotechnol. 2013 Nov;8(11):839-44 - PubMed
  12. Nature. 2013 Apr 25;496(7446):486-9 - PubMed
  13. Rep Prog Phys. 2014 May;77(5):056503 - PubMed
  14. Nat Commun. 2015 Aug 07;6:7886 - PubMed
  15. Nano Lett. 2010 Aug 11;10(8):3199-203 - PubMed
  16. Science. 2014 Jun 20;344(6190):1366-9 - PubMed
  17. Science. 2015 Mar 6;347(6226):1129-32 - PubMed
  18. Science. 2004 Dec 10;306(5703):1910-3 - PubMed
  19. Nanotechnology. 2009 Dec 9;20(49):495401 - PubMed
  20. Nat Nanotechnol. 2008 Nov;3(11):643-4 - PubMed
  21. Science. 2001 Nov 16;294(5546):1484-8 - PubMed

Publication Types