Display options
Share it on

Stem Cells Int. 2016;2016:5481493. doi: 10.1155/2016/5481493. Epub 2016 Jan 12.

Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes.

Stem cells international

Angela Maria Cozzolino, Valeria Noce, Cecilia Battistelli, Alessandra Marchetti, Germana Grassi, Carla Cicchini, Marco Tripodi, Laura Amicone

Affiliations

  1. Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
  2. National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense 292, 00149 Rome, Italy.
  3. Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense 292, 00149 Rome, Italy.

PMID: 27057172 PMCID: PMC4737459 DOI: 10.1155/2016/5481493

Abstract

In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that, in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines as in vitro models of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.

References

  1. Science. 2005 Nov 18;310(5751):1139-43 - PubMed
  2. Methods Cell Biol. 2007;83:29-46 - PubMed
  3. Cell. 2014 Jun 5;157(6):1324-38 - PubMed
  4. J Cell Sci. 2012 Jul 1;125(Pt 13):3061-73 - PubMed
  5. Cell Rep. 2013 Dec 26;5(6):1611-24 - PubMed
  6. Stem Cells Int. 2015;2015:794632 - PubMed
  7. Stem Cells. 2006 Dec;24(12):2840-50 - PubMed
  8. BMC Biotechnol. 2004 Mar 19;4:5 - PubMed
  9. Am J Pathol. 2008 Nov;173(5):1551-65 - PubMed
  10. Nat Mater. 2005 Jun;4(6):460-4 - PubMed
  11. Oncogene. 2009 Dec 10;28(49):4326-43 - PubMed
  12. Hepatology. 1998 Dec;28(6):1645-54 - PubMed
  13. Tissue Eng Part C Methods. 2009 Jun;15(2):157-67 - PubMed
  14. Cell Stem Cell. 2014 Sep 4;15(3):340-9 - PubMed
  15. Dis Model Mech. 2011 Mar;4(2):165-78 - PubMed
  16. Genes Dev. 2008 Jul 15;22(14):1962-71 - PubMed
  17. Cell Rep. 2014 Oct 9;9(1):261-71 - PubMed
  18. Cell Death Differ. 2013 Aug;20(8):1116-23 - PubMed
  19. Toxicol In Vitro. 2012 Feb;26(1):7-15 - PubMed
  20. EMBO J. 2008 Nov 5;27(21):2829-38 - PubMed
  21. Nat Protoc. 2013 Feb;8(2):430-7 - PubMed
  22. J Biomech. 2010 Nov 16;43(15):2881-6 - PubMed
  23. Nat Mater. 2013 Dec;12(12):1154-62 - PubMed
  24. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5 - PubMed
  25. Mol Biol Cell. 2014 Jan;25(1):87-94 - PubMed
  26. Hepatology. 2004 Jun;39(6):1508-16 - PubMed
  27. EMBO J. 2015 Apr 15;34(8):987-1008 - PubMed
  28. Cancer Cell. 2011 Jun 14;19(6):776-91 - PubMed
  29. Nature. 2011 Jun 08;474(7350):179-83 - PubMed
  30. Hepatology. 2007 Oct;46(4):1246-56 - PubMed
  31. Curr Protoc Cell Biol. 2010 Jun;Chapter 10:Unit 10.16 - PubMed
  32. Cell Rep. 2015 Mar 10;:null - PubMed
  33. Free Radic Biol Med. 2001 Mar 1;30(5):506-15 - PubMed
  34. J Biol Chem. 2004 Aug 6;279(32):33398-408 - PubMed
  35. Nat Mater. 2012 Jul 01;11(8):734-41 - PubMed
  36. Am J Physiol Gastrointest Liver Physiol. 2007 Dec;293(6):G1147-54 - PubMed
  37. J Cell Physiol. 1999 Oct;181(1):24-32 - PubMed
  38. Cell. 2009 Nov 25;139(5):891-906 - PubMed
  39. Oncogene. 2011 Jun 16;30(24):2697-706 - PubMed
  40. Hepatology. 2013 Jan;57(1):311-9 - PubMed
  41. Cell Rep. 2014 Aug 21;8(4):933-9 - PubMed
  42. Hepat Med. 2010 May 25;2:49-67 - PubMed
  43. Cell Death Differ. 2008 Jan;15(1):123-33 - PubMed
  44. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9912-7 - PubMed
  45. Hum Mol Genet. 2012 May 1;21(9):2054-67 - PubMed
  46. Differentiation. 2007 Apr;75(4):299-307 - PubMed
  47. EMBO J. 1997 Feb 3;16(3):495-503 - PubMed
  48. Stem Cells. 2007 Jul;25(7):1779-90 - PubMed
  49. Nucleic Acids Res. 2012 Sep 1;40(17):8266-75 - PubMed

Publication Types