Display options
Share it on

Cell Syst. 2016 Feb 24;2(2):112-121. doi: 10.1016/j.cels.2016.01.012.

Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting.

Cell systems

Karin J Jensen, Christian B Moyer, Kevin A Janes

Affiliations

  1. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Sanofi Oncology, Cambridge, MA 02139, USA.
  2. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
  3. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

PMID: 26942229 PMCID: PMC4770809 DOI: 10.1016/j.cels.2016.01.012

Abstract

Chemical inhibition and genetic knockdown of enzymes are not equivalent in cells, but network-level mechanisms that cause discrepancies between knockdown and inhibitor perturbations are not understood. Here we report that enzymes regulated by negative feedback are robust to knockdown but susceptible to inhibition. Using the Raf-MEK-ERK kinase cascade as a model system, we find that ERK activation is resistant to genetic knockdown of MEK but susceptible to a comparable degree of chemical MEK inhibition. We demonstrate that negative feedback from ERK to Raf causes this knockdown-versus-inhibitor discrepancy in vivo. Exhaustive mathematical modeling of three-tiered enzyme cascades suggests that this result is general: negative autoregulation or feedback favors inhibitor potency, whereas positive autoregulation or feedback favors knockdown potency. Our findings provide a rationale for selecting pharmacologic versus genetic perturbations in vivo and point out the dangers of using knockdown approaches in search of drug targets.

References

  1. Curr Biol. 2001 Aug 7;11(15):1176-82 - PubMed
  2. Science. 2002 Dec 6;298(5600):1911-2 - PubMed
  3. Conf Proc IEEE Eng Med Biol Soc. 2006;1:53-4 - PubMed
  4. Mol Syst Biol. 2007;3:144 - PubMed
  5. PLoS Comput Biol. 2011 Jun;7(6):e1002085 - PubMed
  6. Mol Cancer Ther. 2004 Apr;3(4):465-72 - PubMed
  7. Cell. 1995 Jan 27;80(2):179-85 - PubMed
  8. Science. 2002 Oct 25;298(5594):824-7 - PubMed
  9. Biochem J. 2012 Jan 1;441(1):77-85 - PubMed
  10. J Biol Chem. 1992 Jul 5;267(19):13553-7 - PubMed
  11. Sci Signal. 2010 Dec 21;3(153):ra90 - PubMed
  12. Cell. 2007 Feb 9;128(3):425-30 - PubMed
  13. BMC Biochem. 2008 Sep 23;9:25 - PubMed
  14. Biophys J. 2011 Dec 7;101(11):2572-81 - PubMed
  15. FASEB J. 1995 Jun;9(9):726-35 - PubMed
  16. Genes Dev. 2010 Dec 15;24(24):2800-11 - PubMed
  17. Nature. 2009 Jul 9;460(7252):274-7 - PubMed
  18. Nat Biotechnol. 2002 Apr;20(4):370-5 - PubMed
  19. Cell Rep. 2015 Nov 24;13(8):1623-32 - PubMed
  20. Oncogene. 2007 Oct 25;26(49):6968-78 - PubMed
  21. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):E803-12 - PubMed
  22. Nature. 2003 Jan 30;421(6922):499-506 - PubMed
  23. Nat Med. 2013 Nov;19(11):1401-9 - PubMed
  24. J Biol Chem. 1989 Mar 25;264(9):4800-4 - PubMed
  25. Cancer Cell. 2002 Sep;2(3):243-7 - PubMed
  26. Nat Rev Drug Discov. 2009 Apr;8(4):321-35 - PubMed
  27. Mol Syst Biol. 2014 Jan 30;10:718 - PubMed
  28. Biochem J. 2000 Oct 1;351(Pt 1):95-105 - PubMed
  29. Mol Biol Cell. 2004 Jul;15(7):3450-63 - PubMed
  30. Curr Biol. 2003 Feb 18;13(4):315-20 - PubMed
  31. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10078-83 - PubMed
  32. ACS Med Chem Lett. 2012 Dec 13;3(12):1034-1038 - PubMed
  33. Mol Syst Biol. 2011 May 24;7:489 - PubMed
  34. Cancer Cell. 2011 Jan 18;19(1):58-71 - PubMed
  35. Nature. 2010 Sep 30;467(7315):596-9 - PubMed
  36. Cell. 1995 Jan 27;80(2):249-57 - PubMed
  37. Cell Growth Differ. 2001 Aug;12(8):397-408 - PubMed
  38. Mol Syst Biol. 2009;5:332 - PubMed
  39. Proc Natl Acad Sci U S A. 2012 Feb 21;109 (8):2860-5 - PubMed
  40. J Biol Chem. 2006 Mar 31;281(13):8917-26 - PubMed
  41. Annu Rev Biochem. 1987;56:615-49 - PubMed
  42. Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 - PubMed
  43. Nat Cell Biol. 2002 Aug;4(8):556-64 - PubMed
  44. Science. 1998 May 8;280(5365):895-8 - PubMed
  45. Nat Genet. 2007 Apr;39(4):503-12 - PubMed
  46. Nat Cell Biol. 2006 Nov;8(11):1195-203 - PubMed
  47. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4519-24 - PubMed
  48. J Biol Chem. 1995 Nov 17;270(46):27489-94 - PubMed
  49. Cell. 2010 May 28;141(5):884-96 - PubMed
  50. Biochem Biophys Res Commun. 2005 Oct 14;336(1):357-63 - PubMed
  51. J Biol Chem. 2004 Sep 24;279(39):40938-45 - PubMed
  52. PLoS Biol. 2008 Dec 2;6(12):2831-52 - PubMed
  53. Mol Cell. 2005 Jan 21;17 (2):215-24 - PubMed
  54. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12675-80 - PubMed
  55. Cell. 2009 May 29;137(5):821-34 - PubMed
  56. Mol Cell. 2011 Sep 2;43(5):723-37 - PubMed
  57. Mol Syst Biol. 2009;5:246 - PubMed
  58. Mol Cell. 2014 Dec 18;56(6):796-807 - PubMed
  59. Sci Signal. 2015 Apr 07;8(371):rs2 - PubMed
  60. J Virol. 2012 Sep;86(18):9721-36 - PubMed
  61. Mol Syst Biol. 2009;5:239 - PubMed
  62. Genes Dev. 1998 Dec 1;12 (23 ):3663-74 - PubMed
  63. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7665-70 - PubMed
  64. J Cell Biol. 2004 Sep 13;166(6):839-51 - PubMed
  65. Cancer Res. 2011 Sep 1;71(17 ):5818-26 - PubMed
  66. J Biol Chem. 1998 Jul 17;273(29):18623-32 - PubMed
  67. Cell. 2009 Aug 21;138(4):760-73 - PubMed
  68. Cell. 2013 Feb 28;152(5):1173-83 - PubMed
  69. Curr Opin Cell Biol. 2003 Apr;15(2):221-31 - PubMed
  70. Oncotarget. 2012 Dec;3(12 ):1533-45 - PubMed
  71. Nat Cell Biol. 2014 Jul;16(7):673-84 - PubMed

Publication Types

Grant support