Display options
Share it on

Front Hum Neurosci. 2016 Mar 02;10:84. doi: 10.3389/fnhum.2016.00084. eCollection 2016.

Evaluating Cognitive Action Control Using Eye-Movement Analysis: An Oculomotor Adaptation of the Simon Task.

Frontiers in human neuroscience

Joan Duprez, Jean-François Houvenaghel, Florian Naudet, Thibaut Dondaine, Manon Auffret, Gabriel Robert, Dominique Drapier, Soizic Argaud, Marc Vérin, Paul Sauleau

Affiliations

  1. "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1 Rennes, France.
  2. "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1Rennes, France; Neurology Department, Rennes University HospitalRennes, France.
  3. "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1Rennes, France; Adult Psychiatry Department, Rennes University HospitalRennes, France; Clinical Investigation Center (INSERM 0203), Department of Pharmacology, Rennes University HospitalRennes, France.
  4. "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1Rennes, France; Adult Psychiatry Department, Rennes University HospitalRennes, France.
  5. "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1Rennes, France; Neuroscience of Emotion and Affective Dynamics Lab, Swiss Center for Affective SciencesGeneva, Switzerland.
  6. "Behavior and Basal Ganglia" Research Unit (EA 4712), University of Rennes 1Rennes, France; Neurophysiology Department, Rennes University HospitalRennes, France.

PMID: 26973499 PMCID: PMC4773592 DOI: 10.3389/fnhum.2016.00084

Abstract

Cognitive action control has been extensively studied using conflict tasks such as the Simon task. In most recent studies, this process has been investigated in the light of the dual route hypothesis and more specifically of the activation-suppression model using distributional analyses. Some authors have suggested that cognitive action control assessment is not specific to response modes. In this study we adapted the Simon task, using oculomotor responses instead of manual responses, in order to evaluate whether the resolution of conflict induced by a two-dimensional stimulus yielded similar results to what is usually reported in tasks with manual responses. Results obtained from 43 young healthy participants revealed the typical congruence effect, with longer reaction times (RT) and lesser accuracy in the incongruent condition. Conditional accuracy functions (CAF) also revealed a higher proportion of fast errors in the incongruent condition and delta plots confirmed that conflict resolution was easier, as the time taken to respond increased. These results are very similar to what has been reported in the literature. Furthermore, our observations are in line with the assumptions of the activation-suppression model, in which automatic activation in conflict situations is captured in the fastest responses and selective inhibition of cognitive action control needs time to build up. Altogether, our results suggest that conflict resolution has core mechanisms whatever the response mode, manual or oculomotor. Using oculomotor responses in such tasks could be of interest when investigating cognitive action control in patients with severe motor disorders.

Keywords: activation-suppression; cognitive control; conflict task; distributional analysis; eye-movement

References

  1. Psychon Bull Rev. 2000 Mar;7(1):107-12 - PubMed
  2. Brain Cogn. 2013 Feb;81(1):82-94 - PubMed
  3. Brain Cogn. 2008 Dec;68(3):255-70 - PubMed
  4. J Psychiatry Neurosci. 2013 Sep;38(5):349-56 - PubMed
  5. J Cogn Neurosci. 2012 Aug;24(8):1709-24 - PubMed
  6. J Exp Psychol Hum Percept Perform. 1994 Aug;20(4):731-50 - PubMed
  7. J Exp Psychol. 1971 Jun;88(3):354-60 - PubMed
  8. Physiol Rev. 2000 Jul;80(3):953-78 - PubMed
  9. Brain. 2010 Dec;133(Pt 12):3611-24 - PubMed
  10. J Exp Psychol Hum Percept Perform. 2001 Jun;27(3):731-51 - PubMed
  11. J Exp Psychol Hum Percept Perform. 2005 Jun;31(3):453-64 - PubMed
  12. Neuroimage. 2007 Apr 1;35(2):940-8 - PubMed
  13. Psychon Bull Rev. 1995 Jun;2(2):174-207 - PubMed
  14. Vision Res. 2012 Nov 15;73:10-22 - PubMed
  15. Acta Psychol (Amst). 1981 Jan;47(1):63-81 - PubMed
  16. Psychol Rev. 1990 Apr;97(2):253-70 - PubMed
  17. Biom J. 2008 Jun;50(3):346-63 - PubMed
  18. J Exp Psychol. 1969 Jul;81(1):174-6 - PubMed
  19. J Cogn Neurosci. 2008 Oct;20(10):1854-65 - PubMed
  20. Neuropsychologia. 2009 Jan;47(1):145-57 - PubMed
  21. Brain Cogn. 2007 Apr;63(3):260-70 - PubMed
  22. Wiley Interdiscip Rev Cogn Sci. 2011 Mar;2(2):174-92 - PubMed
  23. Psychopharmacology (Berl). 2015 May;232(10):1735-46 - PubMed
  24. Psychophysiology. 2001 Jan;38(1):157-62 - PubMed
  25. Vision Res. 2009 Mar;49(5):569-74 - PubMed
  26. Cortex. 2002 Apr;38(2):149-59 - PubMed
  27. Front Hum Neurosci. 2010 Dec 13;4:222 - PubMed
  28. J Mot Behav. 2001 Mar;33(1):16-26 - PubMed
  29. Percept Psychophys. 2007 Jul;69(5):785-801 - PubMed
  30. Atten Percept Psychophys. 2010 Oct;72(7):2013-25 - PubMed
  31. Psychol Res. 2002 Nov;66(4):324-36 - PubMed
  32. J Exp Psychol Hum Percept Perform. 1995 Aug;21(4):837-54 - PubMed
  33. Acta Psychol (Amst). 1975 Dec;39(6):427-39 - PubMed
  34. Neuropsychologia. 2009 Jul;47(8-9):1844-53 - PubMed
  35. Psychon Bull Rev. 2011 Apr;18(2):242-66 - PubMed
  36. Behav Res Methods. 2010 Feb;42(1):188-204 - PubMed
  37. Psychol Res. 2002 Nov;66(4):312-23 - PubMed
  38. J Neurosci. 2008 Sep 24;28(39):9790-6 - PubMed

Publication Types