Display options
Share it on

Front Aging Neurosci. 2016 Mar 03;8:32. doi: 10.3389/fnagi.2016.00032. eCollection 2016.

The Lateralization of Intrinsic Networks in the Aging Brain Implicates the Effects of Cognitive Training.

Frontiers in aging neuroscience

Cheng Luo, Xingxing Zhang, Xinyi Cao, Yulong Gan, Ting Li, Yan Cheng, Weifang Cao, Lijuan Jiang, Dezhong Yao, Chunbo Li

Affiliations

  1. Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China.
  2. Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China.
  3. Changning Mental Health Center Shanghai, China.
  4. Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of MedicineShanghai, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghai, China.

PMID: 26973508 PMCID: PMC4776123 DOI: 10.3389/fnagi.2016.00032

Abstract

Lateralization of function is an important organization of the human brain. The distribution of intrinsic networks in the resting brain is strongly related to cognitive function, gender and age. In this study, a longitudinal design with 1 year's duration was used to evaluate the cognitive training effects on the lateralization of intrinsic networks among healthy older adults. The subjects were divided into two groups randomly: one with multi-domain cognitive training over 3 months and the other as a wait-list control group. Resting state fMRI data were acquired before training and 1 year after training. We analyzed the functional lateralization in 10 common resting state fMRI networks. We observed statically significant training effects on the lateralization of two important RSNs related to high-level cognition: right- and left- frontoparietal networks (FPNs). The lateralization of the left-FPN was retained especially well in the training group but decreased in the control group. The increased lateralization with aging was observed in the cerebellum network (CereN), in which the lateralization was significantly increased in the control group, although the same change tendency was observed in the training group. These findings indicate that the lateralization of the high-level cognitive intrinsic networks is sensitive to multi-domain cognitive training. This study provides neuroimaging evidence to support the hypothesis that cognitive training should have an advantage in preventing cognitive decline in healthy older adults.

Keywords: aging; cognitive training; fMRI; functional network; lateralization

References

  1. Arch Med Sci. 2011 Oct;7(5):850-7 - PubMed
  2. PLoS Biol. 2014 Jan;12 (1):e1001767 - PubMed
  3. Neuropsychol Rev. 2009 Dec;19(4):504-22 - PubMed
  4. Curr Psychiatry Rep. 2010 Feb;12(1):20-7 - PubMed
  5. Neuroimage. 2015 Mar;108:47-59 - PubMed
  6. J Neurol Sci. 2015 Jul 15;354(1-2):79-85 - PubMed
  7. PLoS One. 2014 Aug 26;9(8):e105508 - PubMed
  8. Sci Rep. 2015 Jun 02;5:10271 - PubMed
  9. J Neural Eng. 2015 Dec;12 (6):066024 - PubMed
  10. Mol Psychiatry. 2013 Aug;18(8):864-74 - PubMed
  11. Alzheimers Dement. 2009 Jan;5(1):50-60 - PubMed
  12. Sci Rep. 2015 Apr 16;5:9763 - PubMed
  13. JAMA. 2002 Nov 13;288(18):2271-81 - PubMed
  14. Neuroimage. 2004 Jul;22(3):1214-22 - PubMed
  15. JAMA. 2002 Feb 13;287(6):742-8 - PubMed
  16. Neuroimage. 2012 Feb 1;59(3):2142-54 - PubMed
  17. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 - PubMed
  18. Cereb Cortex. 2009 Oct;19(10):2485-97 - PubMed
  19. Prog Neurobiol. 2011 Dec;95(4):505-9 - PubMed
  20. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3435-44 - PubMed
  21. Neuroimage. 2015 Jan 1;104:310-25 - PubMed
  22. Neural Plast. 2014;2014:180138 - PubMed
  23. J Clin Exp Neuropsychol. 2001 Oct;23(5):620-7 - PubMed
  24. J Neurosci. 2009 Jul 1;29(26):8586-94 - PubMed
  25. Neurosci Biobehav Rev. 2010 Apr;34(5):721-33 - PubMed
  26. Curr Biol. 2013 Jun 3;23(11):987-92 - PubMed
  27. J Cogn Neurosci. 2003 Feb 15;15(2):249-59 - PubMed
  28. Cereb Cortex. 2009 Mar;19(3):640-57 - PubMed
  29. J Neurol Sci. 2014 Apr 15;339(1-2):189-95 - PubMed
  30. Clin Neuropsychol. 2010;24(5):811-26 - PubMed
  31. Neural Plast. 2016;2016:3547203 - PubMed
  32. J Neurosci. 2013 Mar 13;33(11):4796-803 - PubMed
  33. Int Psychogeriatr. 2006 Sep;18(3):551-63 - PubMed
  34. Cortex. 2013 Jan;49(1):200-10 - PubMed
  35. BMC Med. 2012 Mar 27;10:30 - PubMed
  36. PLoS One. 2011;7(1):e28196 - PubMed
  37. Neural Plast. 2016;2016:9803165 - PubMed
  38. Neuron. 2009 Apr 16;62(1):42-52 - PubMed
  39. Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 - PubMed
  40. Neuroimage. 2010 Jul 15;51(4):1414-24 - PubMed
  41. Mol Psychiatry. 2012 May;17(5):471, 549-58 - PubMed
  42. Hum Brain Mapp. 2012 Jun;33(6):1279-94 - PubMed
  43. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51 - PubMed
  44. Front Aging Neurosci. 2014 Oct 29;6:280 - PubMed
  45. Arch Clin Neuropsychol. 2008 Mar;23(2):129-37 - PubMed
  46. J Neurosci. 2008 Jul 9;28(28):7031-5 - PubMed
  47. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 - PubMed
  48. PLoS One. 2012;7(5):e36568 - PubMed
  49. Schizophr Res. 2015 Aug;166(1-3):151-7 - PubMed

Publication Types