Display options
Share it on

Front Aging Neurosci. 2016 Mar 03;8:40. doi: 10.3389/fnagi.2016.00040. eCollection 2016.

Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and Aging on Resting State Dynamics in MEG and fMRI.

Frontiers in aging neuroscience

Aneta Kielar, Tiffany Deschamps, Ron K O Chu, Regina Jokel, Yasha B Khatamian, Jean J Chen, Jed A Meltzer

Affiliations

  1. Rotman Research Institute, Baycrest Health Sciences Toronto, ON, Canada.
  2. Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada; Department of Psychology, University of TorontoToronto, ON, Canada.
  3. Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada; Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada.
  4. Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada; Department of Medical Biophysics, University of TorontoToronto, ON, Canada; Canadian Partnership for Stroke RecoveryOttawa, ON, Canada.
  5. Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada; Department of Psychology, University of TorontoToronto, ON, Canada; Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada; Canadian Partnership for Stroke RecoveryOttawa, ON, Canada.

PMID: 26973515 PMCID: PMC4776400 DOI: 10.3389/fnagi.2016.00040

Abstract

Spontaneous signals in neuroimaging data may provide information on cortical health in disease and aging, but the relative sensitivity of different approaches is unknown. In the present study, we compared different but complementary indicators of neural dynamics in resting-state MEG and BOLD fMRI, and their relationship with blood flow. Participants included patients with post-stroke aphasia, age-matched controls, and young adults. The complexity of brain activity at rest was quantified in MEG using spectral analysis and multiscale entropy (MSE) measures, whereas BOLD variability was quantified as the standard deviation (SDBOLD), mean squared successive difference (MSSD), and sample entropy of the BOLD time series. We sought to assess the utility of signal variability and complexity measures as markers of age-related changes in healthy adults and perilesional dysfunction in chronic stroke. The results indicate that reduced BOLD variability is a robust finding in aging, whereas MEG measures are more sensitive to the cortical abnormalities associated with stroke. Furthermore, reduced complexity of MEG signals in perilesional tissue were correlated with hypoperfusion as assessed with arterial spin labeling (ASL), while no such relationship was apparent with BOLD variability. These findings suggest that MEG signal complexity offers a sensitive index of neural dysfunction in perilesional tissue in chronic stroke, and that these effects are clearly distinguishable from those associated with healthy aging.

Keywords: BOLD variability; MEG; aging; aphasia; blood flow; multiscale entropy; stroke

References

  1. Neurosci Biobehav Rev. 2013 May;37(4):610-24 - PubMed
  2. Clin Neurophysiol. 2006 May;117(5):952-8 - PubMed
  3. Aphasiology. 2012 Sep;26(9):1169-1191 - PubMed
  4. Brain Lang. 2005 Apr;93(1):95-105 - PubMed
  5. Sci Rep. 2014 May 29;4:5101 - PubMed
  6. Restor Neurol Neurosci. 2010;28(4):511-29 - PubMed
  7. Curr Neurol Neurosci Rep. 2009 Nov;9(6):451-8 - PubMed
  8. Neuroimage. 2012 Apr 2;60(2):1528-37 - PubMed
  9. J Neurosci Res. 2006 May 1;83(6):1077-87 - PubMed
  10. AJNR Am J Neuroradiol. 2001 May;22(5):806-7 - PubMed
  11. Clin Neurophysiol. 2004 Dec;115(12):2699-710 - PubMed
  12. Nat Neurosci. 2008 Sep;11(9):1100-8 - PubMed
  13. Brain Topogr. 1996 Spring;8(3):215-21 - PubMed
  14. PLoS One. 2013;8(2):e56733 - PubMed
  15. Phys Med Biol. 1999 Feb;44(2):423-40 - PubMed
  16. J Crit Care. 2008 Sep;23(3):399-405 - PubMed
  17. Neurology. 2008 Jul 15;71(3):184-9 - PubMed
  18. Magn Reson Imaging. 2008 Feb;26(2):261-9 - PubMed
  19. Arzneimittelforschung. 2010;60(4):177-81 - PubMed
  20. Magn Reson Imaging. 2009 Oct;27(8):1039-45 - PubMed
  21. Cereb Cortex. 2010 Jun;20(6):1432-47 - PubMed
  22. Brain Topogr. 1995 Winter;8(2):169-80 - PubMed
  23. PLoS One. 2013 Apr 11;8(4):e61146 - PubMed
  24. Neuroimage. 2008 Feb 15;39(4):2038-46 - PubMed
  25. Neurosci Lett. 2004 Jan 23;355(1-2):93-6 - PubMed
  26. Cereb Cortex. 2014 Jul;24(7):1806-17 - PubMed
  27. Med Eng Phys. 2007 Dec;29(10):1073-83 - PubMed
  28. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 - PubMed
  29. J Clin Neurophysiol. 2004 Sep-Oct;21(5):341-52 - PubMed
  30. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021906 - PubMed
  31. Magn Reson Med. 2006 Sep;56(3):546-52 - PubMed
  32. Clin EEG Neurosci. 2004 Jul;35(3):116-24 - PubMed
  33. Neuroimage. 2011 Mar 15;55(2):468-78 - PubMed
  34. J Commun Disord. 2000 Jul-Aug;33(4):357-66 - PubMed
  35. Elife. 2013 Nov 19;2:e01157 - PubMed
  36. Neuroimage. 2005 Oct 15;28(1):72-83 - PubMed
  37. Clin Neurophysiol. 2013 Jan;124(1):10-9 - PubMed
  38. Brain. 2006 Jun;129(Pt 6):1371-84 - PubMed
  39. Clin Neurophysiol. 2001 Feb;112(2):378-85 - PubMed
  40. Neuroimage. 2014 Jul 15;95:330-5 - PubMed
  41. Clin Neurophysiol. 2010 Oct;121(10):1719-25 - PubMed
  42. Psychiatry Res. 2013 Dec 30;214(3):341-8 - PubMed
  43. Clin Neurophysiol. 2010 Oct;121(10):1707-8 - PubMed
  44. Neuroradiology. 2004 Jan;46(1):31-9 - PubMed
  45. J Neurosci. 2011 Mar 23;31(12):4496-503 - PubMed
  46. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  47. Ann Nucl Med. 2010 Nov;24(9):629-38 - PubMed
  48. Brain. 1998 Nov;121 ( Pt 11):2083-94 - PubMed
  49. J Neurosci. 2013 Jun 5;33(23):9855-65 - PubMed
  50. Neurology. 2001 Mar 13;56(5):670-2 - PubMed
  51. Clin Neurophysiol. 2010 Apr;121(4):549-55 - PubMed
  52. Clin Neurophysiol. 2007 Aug;118(8):1691-704 - PubMed
  53. Brain Lang. 2011 Jul;118(1-2):40-50 - PubMed
  54. Clin Neurophysiol. 2006 Oct;117(10):2338-9 - PubMed
  55. Brain Lang. 2006 Jul;98(1):118-23 - PubMed
  56. NMR Biomed. 1997 Jun-Aug;10(4-5):237-49 - PubMed
  57. J Neurosci. 2010 Apr 7;30(14):4914-21 - PubMed
  58. Arch Ital Biol. 2010 Sep;148(3):323-37 - PubMed
  59. J Cogn Neurosci. 2011 Sep;23(9):2309-23 - PubMed
  60. Magn Reson Med. 1999 Jun;41(6):1246-54 - PubMed
  61. Front Aging Neurosci. 2012 Sep 25;4:27 - PubMed
  62. Neurobiol Aging. 2013 Feb;34(2):428-38 - PubMed
  63. Aphasiology. 2002 Sep 1;16(9):859-871 - PubMed
  64. J Neurosci. 2010 Jun 9;30(23):7755-7 - PubMed
  65. Brain Lang. 2004 Jun;89(3):524-30 - PubMed
  66. Neuroimage. 2011 Feb 1;54(3):2033-44 - PubMed
  67. J Neurotrauma. 2009 Aug;26(8):1213-26 - PubMed
  68. J Clin Neurophysiol. 2009 Aug;26(4):257-66 - PubMed
  69. J Nucl Med. 1997 Nov;38(11):1693-8 - PubMed
  70. Cereb Cortex. 2013 Mar;23(3):684-93 - PubMed
  71. Neuroimage. 2010 Jul 1;51(3):995-1005 - PubMed
  72. Neuroimage. 2002 Apr;15(4):870-8 - PubMed
  73. Stroke. 2010 Jun;41(6):1229-36 - PubMed
  74. Front Neuroinform. 2014 Jul 23;8:69 - PubMed
  75. Methods. 2001 Oct;25(2):249-71 - PubMed
  76. Magn Reson Med. 1998 Sep;40(3):383-96 - PubMed
  77. Ann Neurol. 2001 Nov;50(5):561-6 - PubMed
  78. Ann Neurol. 2007 Jul;62(1):102-5 - PubMed
  79. PLoS Comput Biol. 2008 Jul 04;4(7):e1000106 - PubMed
  80. Neuroimage. 2002 Sep;17(1):174-83 - PubMed
  81. N Engl J Med. 2004 Feb 26;350(9):949-50 - PubMed
  82. Comput Biomed Res. 1996 Jun;29(3):162-73 - PubMed
  83. Neural Plast. 2012;2012:720278 - PubMed
  84. Stroke. 2007 Apr;38(4):1286-92 - PubMed
  85. PLoS Comput Biol. 2008 Oct;4(10):e1000196 - PubMed
  86. Neuroimage Clin. 2015 Apr 08;8:157-69 - PubMed
  87. Curr Neurol Neurosci Rep. 2008 Nov;8(6):475-83 - PubMed
  88. BMC Biol. 2004 Aug 25;2:20 - PubMed
  89. Brain Lang. 2001 Dec;79(3):495-510 - PubMed
  90. Stroke. 2000 Mar;31(3):680-7 - PubMed
  91. Nat Neurosci. 2006 Jan;9(1):23-5 - PubMed
  92. Ann Neurol. 1999 Apr;45(4):430-8 - PubMed

Publication Types