Display options
Share it on

Front Microbiol. 2016 Mar 03;7:226. doi: 10.3389/fmicb.2016.00226. eCollection 2016.

Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.

Frontiers in microbiology

Ciara Keating, Jason P Chin, Dermot Hughes, Panagiotis Manesiotis, Denise Cysneiros, Therese Mahony, Cindy J Smith, John W McGrath, Vincent O'Flaherty

Affiliations

  1. Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland.
  2. School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast Belfast, UK.
  3. School of Chemistry and Chemical Engineering, The Queen's University of Belfast Belfast, UK.

PMID: 26973608 PMCID: PMC4776080 DOI: 10.3389/fmicb.2016.00226

Abstract

We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.

Keywords: LtAD; hybrid reactor; microbial ecology and physiology; phosphate removal; psychrophilic; sewage

References

  1. Annu Rev Microbiol. 2000;54:709-34 - PubMed
  2. Appl Environ Microbiol. 2000 Nov;66(11):4605-14 - PubMed
  3. Appl Environ Microbiol. 2000 Dec;66(12):5488-91 - PubMed
  4. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):681-91 - PubMed
  5. Adv Appl Microbiol. 2003;52:75-100 - PubMed
  6. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  7. Bioresour Technol. 2004 Jul;93(3):269-78 - PubMed
  8. Biotechnol Bioeng. 2005 Mar 20;89(6):670-9 - PubMed
  9. Bioresour Technol. 2006 Sep;97(14):1669-78 - PubMed
  10. Appl Environ Microbiol. 2005 Nov;71(11):7493-503 - PubMed
  11. FEMS Microbiol Ecol. 2005 Nov 1;54(3):375-80 - PubMed
  12. Appl Environ Microbiol. 1990 Jun;56(6):1636-44 - PubMed
  13. Appl Environ Microbiol. 2006 Apr;72(4):2765-74 - PubMed
  14. Environ Microbiol. 2006 May;8(5):804-15 - PubMed
  15. Biotechnol Bioeng. 2006 Oct 20;95(3):384-98 - PubMed
  16. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  17. Water Sci Technol. 2006;53(9):63-70 - PubMed
  18. BMC Microbiol. 2008 Jul 24;8:125 - PubMed
  19. Curr Opin Biotechnol. 2008 Oct;19(5):445-53 - PubMed
  20. ISME J. 2009 Nov;3(11):1231-42 - PubMed
  21. Bioresour Technol. 2009 Dec;100(24):6155-62 - PubMed
  22. Nature. 2009 Oct 8;461(7265):716-8 - PubMed
  23. Bioresour Technol. 2010 Aug;101(16):6336-44 - PubMed
  24. Water Res. 2010 Jul;44(14):4261-9 - PubMed
  25. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  26. Bioresour Technol. 2011 Feb;102(3):2248-54 - PubMed
  27. Bioresour Technol. 2011 Feb;102(4):3730-9 - PubMed
  28. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4158-63 - PubMed
  29. Water Res. 2011 May;45(11):3533-40 - PubMed
  30. Bioinformatics. 2011 Aug 15;27(16):2194-200 - PubMed
  31. Environ Microbiol. 2011 Sep;13(9):2587-99 - PubMed
  32. PLoS One. 2011;6(11):e26939 - PubMed
  33. Water Sci Technol. 2011;64(11):2259-64 - PubMed
  34. Curr Opin Biotechnol. 2012 Jun;23(3):444-51 - PubMed
  35. Water Res. 2012 May 1;46(7):2376-84 - PubMed
  36. ISME J. 2012 Aug;6(8):1621-4 - PubMed
  37. Extremophiles. 2012 Jul;16(4):573-83 - PubMed
  38. Bioresour Technol. 2012 Oct;122:149-59 - PubMed
  39. Water Res. 2012 Nov 1;46(17):5756-5764 - PubMed
  40. Microb Biotechnol. 2012 Nov;5(6):738-52 - PubMed
  41. Water Sci Technol. 2012;66(12):2597-603 - PubMed
  42. Water Sci Technol. 2013;67(2):293-8 - PubMed
  43. Water Res. 2013 Mar 15;47(4):1655-65 - PubMed
  44. Bioprocess Biosyst Eng. 2014 Feb;37(2):277-87 - PubMed
  45. Archaea. 2013;2013:346171 - PubMed
  46. Bioresour Technol. 2014 Jan;151:249-57 - PubMed
  47. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):10933-8 - PubMed
  48. Bioresour Technol. 2014 Nov;171:80-7 - PubMed
  49. J Biotechnol. 2014 Dec 20;192 Pt A:179-86 - PubMed
  50. J Environ Manage. 2015 Mar 15;151:200-9 - PubMed
  51. Water Res. 2015 Apr 15;73:157-70 - PubMed
  52. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4381-6 - PubMed
  53. Biochemistry (Mosc). 2014 Dec;79(13):1602-14 - PubMed
  54. FEMS Microbiol Lett. 2015 May;362(10):null - PubMed
  55. Water Res. 2015 Sep 15;81:1-14 - PubMed
  56. Environ Technol. 1993 Nov;14(11):1081-1087 - PubMed
  57. Antonie Van Leeuwenhoek. 1995 Nov;68(4):297-308 - PubMed
  58. Int J Syst Bacteriol. 1996 Oct;46(4):1145-52 - PubMed

Publication Types