Display options
Share it on

Algorithms Mol Biol. 2016 Mar 11;11:2. doi: 10.1186/s13015-016-0064-x. eCollection 2016.

Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage.

Algorithms for molecular biology : AMB

Jean P Zukurov, Sieberth do Nascimento-Brito, Angela C Volpini, Guilherme C Oliveira, Luiz Mario R Janini, Fernando Antoneli

Affiliations

  1. Departmento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
  2. Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil ; Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil.
  3. Genomics and Computational Biology Group, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil.
  4. Departmento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil ; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
  5. Departmento de Informática em Saúde, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil ; Laboratório de de Biocomplexidade e Genômica Evolutiva, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.

PMID: 26973707 PMCID: PMC4788855 DOI: 10.1186/s13015-016-0064-x

Abstract

BACKGROUND: In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some next-generation sequencing platforms in order to estimate a population of haplotypes which represent the diversity of the original population. The method proposed here is custom-made to take advantage of the very low error rate and extremely deep coverage per site, which are the main features of some neglected technologies that have not received much attention due to the short length of its reads, which precludes haplotype estimation. This approach allowed us to avoid some hard problems related to haplotype reconstruction (need of long reads, preliminary error filtering and assembly).

RESULTS: We propose to measure genetic diversity of a viral population through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the distribution of nucleic bases per site. Moreover, the implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the inference of the multinomial parameters in a Bayesian framework with smoothed Dirichlet estimation. The Bayesian approach provides conditional probability distributions for the multinomial parameters allowing one to take into account the prior information of the control experiment and providing a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals and thus avoids the drawbacks of preliminary error filtering.

CONCLUSIONS: The methods described in this paper have been implemented as an integrated tool called Tanden (Tool for Analysis of Diversity in Viral Populations) and successfully tested on samples obtained from HIV-1 strain NL4-3 (group M, subtype B) cultivations on primary human cell cultures in many distinct viral propagation conditions. Tanden is written in C# (Microsoft), runs on the Windows operating system, and can be downloaded from: http://tanden.url.ph/.

Keywords: Bayesian inference; Dirichlet distribution; Viral diversity

References

  1. J Virol. 1995 Aug;69(8):5087-94 - PubMed
  2. BMC Bioinformatics. 2015 Feb 22;16:59 - PubMed
  3. PLoS One. 2014 Mar 05;9(3):e90581 - PubMed
  4. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19872-7 - PubMed
  5. Genome Res. 2008 Nov;18(11):1851-8 - PubMed
  6. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  7. Nucleic Acids Res. 2012 Jan;40(1):414-27 - PubMed
  8. Genome Biol. 2013 Jul 03;14(7):405 - PubMed
  9. In Silico Biol. 2011-2012;11(5-6):193-201 - PubMed
  10. AIDS Res Hum Retroviruses. 2009 Sep;25(9):937-42 - PubMed
  11. Genome Res. 2012 Mar;22(3):568-76 - PubMed
  12. PLoS One. 2010 Jun 03;5(6):e10952 - PubMed
  13. Bioinformatics. 2010 Mar 15;26(6):730-6 - PubMed
  14. Nat Methods. 2009 Nov;6(11 Suppl):S6-S12 - PubMed
  15. PLoS One. 2009 May 25;4(5):e5683 - PubMed
  16. BMC Bioinformatics. 2011 Jan 05;12:5 - PubMed
  17. PLoS One. 2010 Oct 22;5(10):e13564 - PubMed
  18. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  19. Nucleic Acids Res. 2014 Aug;42(14):e115 - PubMed
  20. Bioinformatics. 2014 Jun 15;30(12):i329-37 - PubMed
  21. PLoS One. 2012;7(10):e47046 - PubMed
  22. PLoS Comput Biol. 2008 May 09;4(4):e1000074 - PubMed
  23. PLoS One. 2009 Nov 11;4(11):e7767 - PubMed
  24. Microbiol Mol Biol Rev. 2012 Jun;76(2):159-216 - PubMed
  25. PLoS Comput Biol. 2014 Mar 27;10(3):e1003515 - PubMed
  26. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  27. PLoS One. 2010 Aug 20;5(8):e12303 - PubMed
  28. Genome Biol. 2014;15(4):113 - PubMed
  29. PLoS Comput Biol. 2012;8(3):e1002417 - PubMed
  30. Curr Opin Virol. 2011 Nov;1(5):413-8 - PubMed
  31. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5 - PubMed
  32. Nat Genet. 2012 Nov;44(11):1215-21 - PubMed
  33. Nat Biotechnol. 2008 Oct;26(10):1135-45 - PubMed
  34. Brief Bioinform. 2004 Jun;5(2):150-63 - PubMed
  35. PLoS One. 2015 Sep 28;10(9):e0139037 - PubMed
  36. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  37. Curr Biol. 2013 Apr 8;23(7):553-9 - PubMed
  38. Nat Rev Genet. 2008 Apr;9(4):267-76 - PubMed
  39. Front Microbiol. 2012 Sep 11;3:329 - PubMed
  40. J Hum Genet. 2011 Jun;56(6):406-14 - PubMed
  41. Genome Res. 2007 Aug;17(8):1195-201 - PubMed
  42. Bioinformatics. 2005 Apr 15;21(8):1408-14 - PubMed
  43. J Infect Dis. 2011 Dec 15;204(12):1918-26 - PubMed

Publication Types

Grant support