Display options
Share it on

Front Oncol. 2016 Mar 01;6:48. doi: 10.3389/fonc.2016.00048. eCollection 2016.

Role of Dose Intensification for Salvage Radiation Therapy after Radical Prostatectomy.

Frontiers in oncology

Marcus Beck, Tomasz Barelkowski, David Kaul, Sascha Wecker, Alexander H Thieme, Daniel R Zwahlen, Peter Wust, Daniel M Aebersold, Volker Budach, Pirus Ghadjar

Affiliations

  1. Department of Radiation Oncology, Charité Universitätsmedizin Berlin , Berlin , Germany.
  2. Kantonsspital Graubünden , Chur , Switzerland.
  3. Bern University Hospital, University of Bern , Bern , Switzerland.

PMID: 26973815 PMCID: PMC4771737 DOI: 10.3389/fonc.2016.00048

Abstract

For primary radiation therapy (RT) of prostate cancer, dose intensification is established as standard of care. Less is known on the role of dose intensification in the postprostatectomy setting for salvage RT. Thus, we aimed to identify and summarize the existing literature. In retrospective analyses, dose-intensified salvage RT showed a superior biochemical control compared to standard dose salvage radiation with favorable acute and late gastrointestinal and genitourinary toxicity rates, especially when modern radiation techniques such as intensity modulated RT were applied. We identified one randomized phase III trial addressing the potential benefits of dose-intensified salvage RT (SAKK 09/10). Recently, acute gastrointestinal and genitourinary toxicities and early quality of life data of this trial were reported, and no significant difference in acute toxicities between both treatment arms were found; however, a significant worsening of genitourinary quality of life was noted in the dose-intensified treatment arm. Whereas dose-intensified salvage RT appears to be feasible and well tolerated, the improved biochemical control rates using dose intensified RT as suggested by retrospective analyses have yet to be validated by prospective trials.

Keywords: dose; prostate cancer; prostatectomy; radiation therapy; salvage

References

  1. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S116-22 - PubMed
  2. JAMA. 2008 Jun 18;299(23):2760-9 - PubMed
  3. J Clin Oncol. 2007 Jun 1;25(16):2225-9 - PubMed
  4. Nat Clin Pract Urol. 2005 Apr;2(4):174-82 - PubMed
  5. Int J Radiat Oncol Biol Phys. 2013 Nov 1;87(3):534-41 - PubMed
  6. Radiat Oncol. 2015 Jul 08;10:138 - PubMed
  7. J Clin Oncol. 2007 May 20;25(15):2035-41 - PubMed
  8. Int J Radiat Oncol Biol Phys. 2008 Jun 1;71(2):346-50 - PubMed
  9. Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):725-32 - PubMed
  10. Eur Urol. 2011 Oct;60(4):842-9 - PubMed
  11. Eur Urol. 2015 May;67(5):825-36 - PubMed
  12. JAMA. 1999 May 5;281(17):1591-7 - PubMed
  13. Eur J Cancer. 2012 Apr;48(6):837-44 - PubMed
  14. Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):104-11 - PubMed
  15. J Urol. 2000 Jun;163(6):1632-42 - PubMed
  16. Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):112-8 - PubMed
  17. J Urol. 2003 Feb;169(2):517-23 - PubMed
  18. Eur Urol. 2014 Feb;65(2):467-79 - PubMed
  19. Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):191-9 - PubMed
  20. Int J Radiat Oncol Biol Phys. 2013 Dec 1;87(5):932-8 - PubMed
  21. J Urol. 2013 Aug;190(2):441-9 - PubMed
  22. J Clin Oncol. 2015 Dec 10;33(35):4158-66 - PubMed
  23. Eur Urol. 2011 Dec;60(6):1142-8 - PubMed
  24. Int J Radiat Oncol Biol Phys. 2008 May 1;71(1):23-7 - PubMed
  25. Int J Radiat Oncol Biol Phys. 2014 Feb 1;88(2):339-44 - PubMed
  26. Eur J Cancer. 2012 Jun;48(9):1415-6; author reply 1414 - PubMed
  27. Int J Radiat Oncol Biol Phys. 2009 Aug 1;74(5):1405-18 - PubMed
  28. Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):e233-8 - PubMed

Publication Types