Display options
Share it on

Dev Reprod. 2015 Jun;19(2):61-7. doi: 10.12717/DR.2015.19.2.061.

A Brief Introduction to the Transduction of Neural Activity into Fos Signal.

Development & reproduction

Leeyup Chung

Affiliations

  1. Dept. of Neurobiology, Duke University School of Medicine, Durham, NC, USA.

PMID: 27004262 PMCID: PMC4801051 DOI: 10.12717/DR.2015.19.2.061

Abstract

The immediate early gene c-fos has long been known as a molecular marker of neural activity. The neuron's activity is transformed into intracellular calcium influx through NMDA receptors and L-type voltage sensitive calcium channels. For the transcription of c-fos, neural activity should be strong enough to activate mitogen-activated protein kinase (MAPK) signaling pathway which shows low calcium sensitivity. Upon translation, the auto-inhibition by Fos protein regulates basal Fos expression. The pattern of external stimuli and the valence of the stimulus to the animal change Fos signal, thus the signal reflects learning and memory aspects. Understanding the features of multiple components regulating Fos signaling is necessary for the optimal generation and interpretation of Fos signal.

Keywords: Fos; c-fos; neuron

References

  1. Annu Rev Neurosci. 1991;14:421-51 - PubMed
  2. J Neurosci. 1997 Apr 1;17(7):2477-91 - PubMed
  3. Nat Neurosci. 2012 Nov;15(11):1556-62 - PubMed
  4. Neuron. 2015 Jun 17;86(6):1385-92 - PubMed
  5. J Neurosci. 1999 Aug 1;19(15):6348-59 - PubMed
  6. Cell. 1989 Dec 22;59(6):999-1007 - PubMed
  7. Stress. 2002 Feb;5(1):3-13 - PubMed
  8. Brain Res. 2015 Dec 2;1628(Pt A):157-73 - PubMed
  9. J Neurosci. 2008 Nov 12;28(46):11760-7 - PubMed
  10. Neuron. 1991 Oct;7(4):625-35 - PubMed
  11. Neuron. 2002 Apr 11;34(2):179-82 - PubMed
  12. Eur J Pharmacol. 2015 Apr 15;753:66-72 - PubMed
  13. Nat Genet. 2002 Apr;30(4):416-20 - PubMed
  14. Histol Histopathol. 2009 Nov;24(11):1451-61 - PubMed
  15. J Neurosci. 2004 Jul 21;24(29):6466-75 - PubMed
  16. Mol Cell Biol. 1999 Jan;19(1):136-46 - PubMed
  17. Prog Mol Biol Transl Sci. 2014;122:89-129 - PubMed
  18. Curr Top Behav Neurosci. 2011;7:121-47 - PubMed
  19. J Neurosci. 2014 May 28;34(22):7485-92 - PubMed
  20. Nat Cell Biol. 2002 Aug;4(8):556-64 - PubMed
  21. Nat Neurosci. 2001 Feb;4(2):151-8 - PubMed
  22. J Neurosci. 2002 Dec 1;22(23 ):10067-71 - PubMed
  23. J Neurochem. 2007 Jan;100(1):1-11 - PubMed
  24. Behav Brain Res. 2013 Nov 1;256:188-96 - PubMed
  25. Nat Rev Neurosci. 2007 Jun;8(6):413-26 - PubMed
  26. Annu Rev Cell Dev Biol. 2008;24:183-209 - PubMed
  27. Prog Neurobiol. 2011 Aug;94(3):259-95 - PubMed
  28. Nature. 1999 Mar 4;398(6722):80-4 - PubMed
  29. Acta Neurobiol Exp (Wars). 2000;60(3):403-10 - PubMed
  30. Brain Res. 1995 Nov 27;700(1-2):1-12 - PubMed
  31. J Neurosci. 1997 Jun 15;17(12):4752-63 - PubMed
  32. Brain Res Brain Res Rev. 1998 Dec;28(3):370-490 - PubMed
  33. Front Neural Circuits. 2014 Apr 23;8:37 - PubMed
  34. J Neurobiol. 1994 Mar;25(3):294-303 - PubMed
  35. Nat Rev Neurosci. 2007 Feb;8(2):101-13 - PubMed
  36. Neuron. 2010 Dec 22;68(6):1128-42 - PubMed
  37. J Neurosci. 2010 Dec 1;30(48):16082-90 - PubMed
  38. Curr Opin Neurobiol. 2003 Jun;13(3):354-65 - PubMed
  39. Brain Res Mol Brain Res. 2002 Dec 30;109(1-2):221-5 - PubMed
  40. J Neurophysiol. 1992 Sep;68(3):767-77 - PubMed
  41. Nature. 2015 Feb 19;518(7539):399-403 - PubMed

Publication Types