Display options
Share it on

Sci Rep. 2016 Mar 23;6:23424. doi: 10.1038/srep23424.

Suppression of spin-exciton state in hole overdoped iron-based superconductors.

Scientific reports

C H Lee, K Kihou, J T Park, K Horigane, K Fujita, F Waßer, N Qureshi, Y Sidis, J Akimitsu, M Braden

Affiliations

  1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
  2. Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85748 Garching, Germany.
  3. Aoyama Gakuin University, Sagamihara 252-5258, Japan.
  4. II. Physikalisches Institut, Universität zu Köln,50937 Cologne, Germany.
  5. Laboratoire Léon Brillouin (LLB), C.E.A./C.N.R.S., F-91191 Gif-sur-Yvette Cedex, France.

PMID: 27005481 PMCID: PMC4804212 DOI: 10.1038/srep23424

Abstract

The mechanism of Cooper pair formation in iron-based superconductors remains a controversial topic. The main question is whether spin or orbital fluctuations are responsible for the pairing mechanism. To solve this problem, a crucial clue can be obtained by examining the remarkable enhancement of magnetic neutron scattering signals appearing in a superconducting phase. The enhancement is called spin resonance for a spin fluctuation model, in which their energy is restricted below twice the superconducting gap value (2Δs), whereas larger energies are possible in other models such as an orbital fluctuation model. Here we report the doping dependence of low-energy magnetic excitation spectra in Ba1-xKxFe2As2 for 0.5 < x < 0.84 studied by inelastic neutron scattering. We find that the behavior of the spin resonance dramatically changes from optimum to overdoped regions. Strong resonance peaks are observed clearly below 2Δs in the optimum doping region, while they are absent in the overdoped region. Instead, there is a transfer of spectral weight from energies below 2Δs to higher energies, peaking at values of 3Δs for x = 0.84. These results suggest a reduced impact of magnetism on Cooper pair formation in the overdoped region.

References

  1. Phys Rev Lett. 2011 Feb 11;106(6):067003 - PubMed
  2. Nat Commun. 2013;4:2874 - PubMed
  3. Phys Rev Lett. 2011 Oct 21;107(17):177003 - PubMed
  4. Phys Rev Lett. 2008 Aug 22;101(8):087004 - PubMed
  5. Phys Rev Lett. 2013 Oct 18;111(16):167002 - PubMed
  6. Sci Rep. 2011;1:115 - PubMed
  7. Phys Rev Lett. 2013 Mar 29;110(13):137001 - PubMed
  8. Phys Rev Lett. 2010 Apr 16;104(15):157001 - PubMed
  9. Phys Rev Lett. 2009 Mar 13;102(10):107006 - PubMed
  10. Phys Rev Lett. 2012 Mar 16;108(11):117001 - PubMed
  11. Science. 2012 Sep 14;337(6100):1314-7 - PubMed
  12. Phys Rev Lett. 2008 Aug 1;101(5):057003 - PubMed
  13. Phys Rev Lett. 2012 Aug 24;109(8):087001 - PubMed
  14. Phys Rev Lett. 2013 Dec 27;111(26):267001 - PubMed
  15. Nature. 2008 Dec 18;456(7224):930-2 - PubMed

Publication Types