Display options
Share it on

Front Zool. 2016 Mar 31;13:15. doi: 10.1186/s12983-016-0147-z. eCollection 2016.

Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners.

Frontiers in zoology

Christopher W Weldon, Leigh Boardman, Danica Marlin, John S Terblanche

Affiliations

  1. Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa.
  2. Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa ; Present address: Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611-0620 USA.
  3. Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa ; Present address: School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 South Africa.
  4. Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa.

PMID: 27034703 PMCID: PMC4815119 DOI: 10.1186/s12983-016-0147-z

Abstract

BACKGROUND: The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a highly invasive species now with an almost cosmopolitan distribution. Two other damaging, polyphagous and closely-related species, the marula fruit fly, Ceratitis cosyra (Walker), and the Natal fly, Ceratitis rosa Karsch, are not established outside of sub-Saharan Africa. In this study, adult water balance traits and nutritional body composition were measured in all three species at different temperatures and levels of relative humidity to determine whether tolerance of water stress may partially explain their distribution.

RESULTS: Adult C. capitata exhibited higher desiccation resistance than C. rosa but not C. cosyra. Desiccation resistance of C. capitata was associated with lower rates of water loss under hot and dry conditions, higher dehydration tolerance, and higher lipid reserves that were catabolised during water stress. In comparison with C. capitata, C. cosyra and C. rosa lost water at significantly higher rates under hot, dry conditions, and did not catabolise lipids or other sources of metabolic water during water stress.

CONCLUSIONS: These results suggest that adult physiological traits permitting higher tolerance of water stress play a role in the success of C. capitata, particularly relative to C. rosa. The distribution of C. cosyra is likely determined by the interaction of temperature with water stress, as well as the availability of suitable hosts for larval development.

Keywords: Body composition; Dehydration tolerance; Desiccation resistance; Starvation; Water loss

References

  1. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15154-8 - PubMed
  2. Genetica. 2002 Sep;116(1):125-35 - PubMed
  3. J Exp Biol. 2003 Apr;206(Pt 7):1183-92 - PubMed
  4. J Insect Physiol. 1997 Jul;43(7):685-694 - PubMed
  5. J Insect Physiol. 2001 Dec;47(12):1429-1440 - PubMed
  6. J Evol Biol. 2004 Jan;17(1):83-93 - PubMed
  7. Mol Ecol. 2006 Mar;15(3):681-94 - PubMed
  8. J Anim Ecol. 2006 Mar;75(2):518-26 - PubMed
  9. J Exp Biol. 2006 May;209(Pt 10):1837-47 - PubMed
  10. Bull Entomol Res. 2006 Jun;96(3):259-68 - PubMed
  11. Ecol Lett. 2006 Aug;9(8):981-93 - PubMed
  12. Genetica. 2007 Sep;131(1):1-9 - PubMed
  13. Bull Entomol Res. 2002 Dec;92(6):461-9 - PubMed
  14. Proc Biol Sci. 2007 Oct 22;274(1625):2531-7 - PubMed
  15. J Insect Physiol. 2008 Feb;54(2):367-77 - PubMed
  16. J Exp Biol. 2009 Jul;212(Pt 13):2120-7 - PubMed
  17. Comp Biochem Physiol A Mol Integr Physiol. 2011 Apr;158(4):531-41 - PubMed
  18. Front Physiol. 2011 Oct 25;2:74 - PubMed
  19. Ecol Evol. 2011 Dec;1(4):479-88 - PubMed
  20. Proc Biol Sci. 2012 Nov 22;279(1747):4668-76 - PubMed
  21. Pest Manag Sci. 2014 Apr;70(4):651-60 - PubMed
  22. Bull Entomol Res. 2013 Dec;103(6):690-9 - PubMed
  23. Proc Biol Sci. 2013 Aug 07;280(1768):20131466 - PubMed
  24. J Insect Physiol. 2013 Dec;59(12):1199-211 - PubMed
  25. J Insect Physiol. 2014 Nov;70:73-80 - PubMed
  26. PLoS One. 2014 Nov 06;9(11):e111582 - PubMed
  27. Oecologia. 1995 Apr;101(4):416-425 - PubMed
  28. Evolution. 1996 Apr;50(2):777-786 - PubMed
  29. J Am Mosq Control Assoc. 1985 Sep;1(3):299-301 - PubMed
  30. J Am Mosq Control Assoc. 1985 Sep;1(3):302-4 - PubMed
  31. Anal Biochem. 1965 May;11(2):266-71 - PubMed
  32. J Exp Biol. 1997 Jun;200(Pt 12):1821-32 - PubMed
  33. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  34. Physiol Zool. 1998 Sep-Oct;71(5):584-94 - PubMed

Publication Types