Display options
Share it on

Sci Rep. 2016 Mar 23;6:23203. doi: 10.1038/srep23203.

Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.

Scientific reports

M Kaniber, K Schraml, A Regler, J Bartl, G Glashagen, F Flassig, J Wierzbowski, J J Finley

Affiliations

  1. Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching b. München, Germany.
  2. Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, Garching, Germany, 85748.
  3. Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany.

PMID: 27005986 PMCID: PMC4804333 DOI: 10.1038/srep23203

Abstract

We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities.

References

  1. Nano Lett. 2012 Aug 8;12(8):3915-9 - PubMed
  2. Nano Lett. 2013 Apr 10;13(4):1816-21 - PubMed
  3. Nanoscale. 2011 Apr;3(4):1304-15 - PubMed
  4. Opt Express. 2008 Jun 9;16(12):9144-54 - PubMed
  5. Nat Commun. 2010;1:150 - PubMed
  6. Nano Lett. 2014 Jan 8;14(1):197-201 - PubMed
  7. J Chem Phys. 2004 Jan 1;120(1):357-66 - PubMed
  8. Phys Rev Lett. 2008 May 23;100(20):203002 - PubMed
  9. Nanotechnology. 2011 Aug 12;22(32):325202 - PubMed
  10. Nanotechnology. 2014 Feb 21;25(7):075203 - PubMed
  11. Science. 2005 Jun 10;308(5728):1607-9 - PubMed
  12. Nano Lett. 2010 Nov 10;10(11):4555-8 - PubMed
  13. Phys Rev Lett. 2009 Jun 26;102(25):256801 - PubMed
  14. Sci Am. 2007 Apr;296(4):56-63 - PubMed
  15. Nat Mater. 2010 Mar;9(3):205-13 - PubMed
  16. Opt Lett. 1983 Nov 1;8(11):581-3 - PubMed
  17. Phys Rev Lett. 2002 Nov 11;89(20):203002 - PubMed
  18. Science. 2003 Sep 26;301(5641):1884-6 - PubMed
  19. Science. 2011 Oct 21;334(6054):333-7 - PubMed
  20. Phys Rev Lett. 2000 May 15;84(20):4721-4 - PubMed
  21. Science. 2010 Aug 20;329(5994):930-3 - PubMed
  22. Rep Prog Phys. 2012 Feb;75(2):024402 - PubMed
  23. J Chem Phys. 2008 Mar 7;128(9):094702 - PubMed
  24. Phys Rev Lett. 2005 Jan 14;94(1):017402 - PubMed
  25. Nat Nanotechnol. 2008 Dec;3(12):733-7 - PubMed
  26. Science. 2007 Jan 5;315(5808):47-9 - PubMed
  27. Adv Mater. 2012 Aug 2;24(29):3988-92 - PubMed
  28. Phys Rev Lett. 2002 Feb 18;88(7):077402 - PubMed
  29. Nano Lett. 2011 Apr 13;11(4):1676-80 - PubMed

Publication Types