Display options
Share it on

Cancer Cell Int. 2016 Mar 22;16:21. doi: 10.1186/s12935-016-0298-1. eCollection 2016.

MiR-519d facilitates the progression and metastasis of cervical cancer through direct targeting Smad7.

Cancer cell international

Jue-Yu Zhou, Si-Rong Zheng, Jie Liu, Rong Shi, Hai-Lang Yu, Min Wei

Affiliations

  1. Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.
  2. Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.

PMID: 27006642 PMCID: PMC4802873 DOI: 10.1186/s12935-016-0298-1

Abstract

BACKGROUND: MicroRNAs (miRNAs) play pivotal roles in the development of various cancer types, including cervical cancer.

METHODS AND RESULTS: In this study, we showed that miR-519d, a miRNA within the chromosome 19 miRNA cluster, was significantly upregulated in cervical cancer tissues, compared with non-tumorous cervical samples. Suppression of miR-519d markedly attenuated the migration and invasion of HeLa and SiHa cervical cancer cells. Additionally, miR-519d inhibited the apoptosis of cervical cancer cells, and the proliferation of cervical cancer cells was also affected following transfection of miR-519d inhibitor. Moreover, we identified Smad7 to be a novel target of miR-519d in cervical cancer cells. MiR-519d matched the 3'-UTR of Smad7 mRNA. Transfection with miR-519d mimics led to apparent downregulation of Smad7 both at the mRNA and protein levels. Luciferase reporter analysis revealed that miR-519d reduced the luciferase activity of Smad7 mRNA 3'-UTR through matching site-dependent manner. And more notably, suppression of Smad7 remarkably restored the migration and invasion of miR-519d-depleted cervical cancer cells.

CONCLUSION: Taken together, these findings implicated that miR-519d promoted the progression and metastasis of cervical cancer through targeting Smad7.

Keywords: Cervical cancer; Metastasis; MiR-519d; Proliferation; Smad7

References

  1. Crit Rev Oncol Hematol. 2013 Mar;85(3):303-14 - PubMed
  2. BMC Cancer. 2010 Mar 23;10:109 - PubMed
  3. Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 - PubMed
  4. Onco Targets Ther. 2014 Apr 23;7:587-97 - PubMed
  5. PLoS One. 2008 Jul 02;3(7):e2557 - PubMed
  6. Oncol Rep. 2009 Apr;21(4):1001-4 - PubMed
  7. Br J Cancer. 2015 Apr 14;112(8):1367-75 - PubMed
  8. Clin Cancer Res. 2011 Mar 15;17(6):1317-30 - PubMed
  9. FEBS Lett. 2015 Jan 2;589(1):102-9 - PubMed
  10. Oncogene. 2015 Jan 8;34(2):237-45 - PubMed
  11. Ann Surg Oncol. 2009 Apr;16(4):826-35 - PubMed
  12. Oncotarget. 2014 Jun 15;5(11):3800-12 - PubMed
  13. Cancer Med. 2014 Aug;3(4):878-88 - PubMed
  14. Acta Biochim Biophys Sin (Shanghai). 2014 Jan;46(1):48-55 - PubMed
  15. Gynecol Oncol. 2015 Dec;139(3):506-12 - PubMed
  16. Gynecol Oncol. 2015 Jan;136(1):104-11 - PubMed
  17. Oncogene. 2007 Apr 26;26(19):2799-803 - PubMed
  18. Cell. 2006 Mar 10;124(5):877-81 - PubMed
  19. Clin Chem. 2011 Jan;57(1):18-32 - PubMed
  20. Nat Commun. 2015 Apr 15;6:6879 - PubMed
  21. Gynecol Oncol. 1999 Dec;75(3):328-33 - PubMed
  22. BMC Cancer. 2013 Sep 18;13:424 - PubMed
  23. J Natl Cancer Inst. 2005 Dec 7;97(23):1734-46 - PubMed
  24. Tumour Biol. 2014 Sep;35(9):8379-85 - PubMed
  25. CA Cancer J Clin. 2015 Mar;65(2):87-108 - PubMed
  26. Int J Cancer. 2004 Dec 20;112(6):1020-8 - PubMed
  27. J Pathol. 2012 Jul;227(3):275-85 - PubMed
  28. Nat Immunol. 2008 Aug;9(8):839-45 - PubMed
  29. Cancer Res. 2010 Feb 15;70(4):1441-8 - PubMed
  30. Cancer Res. 2007 Mar 1;67(5):2317-24 - PubMed
  31. Nature. 1997 Oct 9;389(6651):631-5 - PubMed
  32. Oncogene. 2008 Apr 3;27(15):2128-36 - PubMed
  33. J Cancer. 2011;2:515-26 - PubMed
  34. PLoS One. 2015 Mar 18;10 (3):e0120045 - PubMed
  35. Clin Chim Acta. 2010 Jun 3;411(11-12):846-52 - PubMed
  36. Cancer Lett. 2011 Aug 28;307(2):182-90 - PubMed

Publication Types