Display options
Share it on

Acta Pharm Sin B. 2016 Mar;6(2):163-9. doi: 10.1016/j.apsb.2016.01.004. Epub 2016 Jan 25.

Comparison of drug release from liquid crystalline monoolein dispersions and solid lipid nanoparticles using a flow cytometric technique.

Acta pharmaceutica Sinica. B

Mohamed Z Dawoud, Mohamed Nasr

Affiliations

  1. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt.

PMID: 27006901 PMCID: PMC4788703 DOI: 10.1016/j.apsb.2016.01.004

Abstract

Colloidal lipid particles such as solid lipid nanoparticles and liquid crystalline nanoparticles have great opportunities as drug carriers especially for lipophilic drugs intended for intravenous administration. In order to evaluate drug release from these nanoparticles and determine their behavior after administration, emulsion droplets were used as a lipophilic compartment to which the transfer of a model drug was measured. The detection of the model drug transferred from monoolein cubic particles and trimyristin solid lipid nanoparticles into emulsion droplets was performed using a flow cytometric technique. A higher rate and amount of porphyrin transfer from the solid lipid nanoparticles compared to the monoolein cubic particles was observed. This difference might be attributed to the formation of a highly ordered particle which leads to the expulsion of drug to the surface of the crystalline particle. Furthermore, the sponge-like structure of the monoolein cubic particles decreases the rate and amount of drug transferred. In conclusion, the flow cytometric technique is a suitable technique to study drug transfer from these carriers to large lipophilic acceptors. Monoolein cubic particles with their unique structure can be used successfully as a drug carrier with slow drug release compared with trimyristin nanoparticles.

Keywords: Cubic particles; Drug release; Drug transfer; Emulsion droplets; Flow cytometric technique; Porphyrin; Solid lipid nanoparticles

References

  1. Eur J Pharm Sci. 2005 Nov;26(3-4):251-65 - PubMed
  2. J Immunol Methods. 1989 Apr 21;119(1):135-43 - PubMed
  3. Methods Mol Biol. 2010;606:1-10 - PubMed
  4. Langmuir. 2004 Mar 16;20(6):2081-5 - PubMed
  5. J Biosci Bioeng. 2006 Sep;102(3):171-8 - PubMed
  6. Adv Drug Deliv Rev. 2001 Apr 25;47(2-3):165-96 - PubMed
  7. Drug Dev Ind Pharm. 2015 Jan;41(1):156-62 - PubMed
  8. Eur J Pharm Biopharm. 1998 Mar;45(2):149-55 - PubMed
  9. J Pharm Pharmacol. 2010 Nov;62(11):1637-45 - PubMed
  10. Eur J Pharm Sci. 1999 Aug;8(4):243-54 - PubMed
  11. Anal Chem. 2006 Aug 15;78(16):5913-9 - PubMed
  12. AAPS PharmSciTech. 2014 Dec;15(6):1551-61 - PubMed
  13. Pharm Res. 2005 Nov;22(11):1887-97 - PubMed
  14. Biochim Biophys Acta. 1994 Jul 14;1213(2):149-58 - PubMed
  15. Mol Pharm. 2010 Apr 5;7(2):350-63 - PubMed
  16. Cytometry. 2000 Feb 1;39(2):166-71 - PubMed
  17. J Control Release. 2004 May 18;96(3):393-402 - PubMed
  18. Biochem Int. 1990 Dec;22(6):983-92 - PubMed
  19. Drug Dev Ind Pharm. 2001 Nov;27(10 ):1073-81 - PubMed
  20. Langmuir. 2005 Mar 15;21(6):2569-77 - PubMed
  21. J Pharm Pharmacol. 1986 Sep;38(9):653-8 - PubMed
  22. Methods Find Exp Clin Pharmacol. 2005 Mar;27(2):127-44 - PubMed
  23. J Control Release. 2005 Oct 3;107(2):229-43 - PubMed
  24. J Control Release. 2000 May 15;66(2-3):115-26 - PubMed
  25. Int J Pharm. 2003 Jul 24;260(2):239-47 - PubMed
  26. Biochim Biophys Acta. 1991 Nov 27;1086(3):265-72 - PubMed
  27. Eur J Pharm Sci. 2006 Jan;27(1):44-53 - PubMed

Publication Types