Display options
Share it on

Biomed Opt Express. 2016 Jan 14;7(2):454-66. doi: 10.1364/BOE.7.000454. eCollection 2016 Feb 01.

Assessing the imaging performance of light sheet microscopies in highly scattering tissues.

Biomedical optics express

A K Glaser, Y Wang, J T C Liu

Affiliations

  1. Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.

PMID: 26977355 PMCID: PMC4771464 DOI: 10.1364/BOE.7.000454

Abstract

Light sheet microscopy (LSM) has emerged as an optical-imaging method for high spatiotemporal volumetric imaging of relatively transparent samples. While this capability has allowed the technique to be highly impactful in fields such as developmental biology, applications involving highly scattering thick tissues have been largely unexplored. Herein, we employ Monte Carlo simulations to explore the use of LSM for imaging turbid media. In particular, due to its similarity to dual-axis confocal (DAC) microscopy, we compare LSM performance to point-scanned (PS-DAC) and line-scanned (LS-DAC) dual-axis confocal microscopy techniques that have been previously shown to produce high-quality images at round-trip optical lengths of ~9 - 10 and ~3 - 4 respectively. The results of this study indicate that LSM using widefield collection (WF-LSM) provides comparable performance to LS-DAC in thick tissues, due to the fact that they both utilize an illumination beam focused in one dimension (i.e. a line or sheet). On the other hand, LSM using confocal line detection (CL-LSM) is more analogous to PS-DAC microscopy, in which the illumination beam is focused in two dimensions to a point. The imaging depth of LSM is only slightly inferior to DAC (~2 - 3 and ~6 - 7 optical lengths for WF-LSM and CL-LSM respectively) due to the use of a lower numerical aperture (NA) illumination beam for extended imaging along the illumination axis. Therefore, we conclude that the ability to image deeply is dictated most by the confocality of the microscope technique. In addition, we find that imaging resolution is mostly dependent on the collection NA, and is relatively invariant to imaging depth in a homogeneous scattering medium. Our results indicate that superficial imaging of highly scattering tissues using light sheet microscopy is possible.

Keywords: (110.0113) Imaging through turbid media; (170.1790) Confocal microscopy; (170.2520) Fluorescence microscopy; (170.3880) Medical and biological imaging; (170.5810) Scanning microscopy

References

  1. Opt Lett. 2003 Mar 15;28(6):414-6 - PubMed
  2. Science. 2004 Aug 13;305(5686):1007-9 - PubMed
  3. Opt Lett. 2006 May 15;31(10):1477-9 - PubMed
  4. J Biomed Opt. 2007 Jan-Feb;12(1):014039 - PubMed
  5. Nat Methods. 2007 Apr;4(4):331-6 - PubMed
  6. Appl Opt. 1997 Sep 1;36(25):6513-9 - PubMed
  7. Appl Opt. 1999 Aug 1;38(22):4870-5 - PubMed
  8. J Biomed Opt. 2008 May-Jun;13(3):034020 - PubMed
  9. Opt Lett. 2009 Oct 1;34(19):3041-3 - PubMed
  10. Opt Express. 2009 Oct 26;17(22):20178-90 - PubMed
  11. J Biomed Opt. 2010 Mar-Apr;15(2):026029 - PubMed
  12. Nat Methods. 2010 Aug;7(8):637-42 - PubMed
  13. Biomed Opt Express. 2010 Aug 2;1(1):165-75 - PubMed
  14. J Histochem Cytochem. 2011 Feb;59(2):129-38 - PubMed
  15. Nat Methods. 2011 May;8(5):417-23 - PubMed
  16. Anal Cell Pathol (Amst). 2011;34(3):81-98 - PubMed
  17. Nat Methods. 2011 Sep 29;8(10):811-9 - PubMed
  18. Curr Opin Genet Dev. 2011 Oct;21(5):566-72 - PubMed
  19. Cold Spring Harb Protoc. 2011 Oct 01;2011(10):1235-43 - PubMed
  20. Med Phys. 2011 Oct;38(10):5788-98 - PubMed
  21. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17708-13 - PubMed
  22. Nat Commun. 2012 Jan 17;3:632 - PubMed
  23. J Microsc. 2012 Sep;247(3):269-76 - PubMed
  24. Opt Express. 2012 Aug 27;20(18):20582-98 - PubMed
  25. Opt Express. 2012 Sep 10;20(19):21805-14 - PubMed
  26. Opt Lett. 2012 Nov 1;37(21):4495-7 - PubMed
  27. Biomed Opt Express. 2012 Dec 1;3(12):3153-60 - PubMed
  28. Opt Express. 2013 Jan 14;21(1):87-101 - PubMed
  29. Opt Express. 2013 Mar 11;21(5):5998-6008 - PubMed
  30. Phys Med Biol. 2013 Jun 7;58(11):R37-61 - PubMed
  31. Biomed Opt Express. 2013 Apr 17;4(5):741-59 - PubMed
  32. J Biomed Opt. 2013 Jun;18(6):066006 - PubMed
  33. Opt Express. 2013 Jun 3;21(11):13824-39 - PubMed
  34. PLoS One. 2013 Jul 02;8(7):e67667 - PubMed
  35. Opt Lett. 2013 Dec 15;38(24):5280-3 - PubMed
  36. J Biomed Opt. 2014 Jul;19(7):071404 - PubMed
  37. J R Soc Interface. 2014 Jan 29;11(93):20130851 - PubMed
  38. Nat Methods. 2014 May;11(5):541-4 - PubMed
  39. J Biomed Opt. 2014 Jun;19(6):065003 - PubMed
  40. Sci Rep. 2014 Nov 14;4:7048 - PubMed
  41. Biomed Opt Express. 2015 Mar 17;6(4):1318-30 - PubMed
  42. Opt Express. 2015 Apr 6;23(7):8699-705 - PubMed
  43. J Biomed Opt. 2015 Jun;20(6):065007 - PubMed
  44. Biomed Opt Express. 2015 Apr 21;6(5):1797-811 - PubMed
  45. Opt Express. 2015 Jun 15;23(12):16142-53 - PubMed
  46. BMC Bioinformatics. 2015;16 Suppl 11:S8 - PubMed
  47. Opt Lett. 2014 Sep 15;39(18):5431-4 - PubMed
  48. Biomed Opt Express. 2016 Jan 05;7(2):251-63 - PubMed
  49. Comput Methods Programs Biomed. 1995 Jul;47(2):131-46 - PubMed

Publication Types

Grant support