Display options
Share it on

Mol Metab. 2015 Dec 25;5(3):184-197. doi: 10.1016/j.molmet.2015.12.002. eCollection 2016 Mar.

High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring.

Molecular metabolism

Thais de Castro Barbosa, Lars R Ingerslev, Petter S Alm, Soetkin Versteyhe, Julie Massart, Morten Rasmussen, Ida Donkin, Rasmus Sjögren, Jonathan M Mudry, Laurène Vetterli, Shashank Gupta, Anna Krook, Juleen R Zierath, Romain Barrès

Affiliations

  1. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
  2. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
  3. Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
  4. Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, 171 76 Stockholm, Sweden.
  5. Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksberg, Denmark.
  6. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, 171 76 Stockholm, Sweden.
  7. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark. Electronic address: [email protected].

PMID: 26977389 PMCID: PMC4770269 DOI: 10.1016/j.molmet.2015.12.002

Abstract

OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring.

METHODS: F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing.

RESULTS: Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets.

CONCLUSION: Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations.

Keywords: DNA methylation; Epigenetics; Obesity; Spermatozoa; microRNA

References

  1. Nat Cell Biol. 2008 Aug;10(8):987-93 - PubMed
  2. Cell. 2010 Dec 23;143(7):1084-96 - PubMed
  3. Nat Rev Mol Cell Biol. 2011 Apr;12(4):246-58 - PubMed
  4. Nutrition. 2006 Mar;22(3):327-31 - PubMed
  5. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  6. Nat Rev Genet. 2009 Feb;10(2):94-108 - PubMed
  7. Arch Dis Child. 1997 Nov;77(5):376-81 - PubMed
  8. Development. 2009 Nov;136(21):3647-55 - PubMed
  9. Cell. 2011 Sep 30;147(1):81-94 - PubMed
  10. Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 - PubMed
  11. FASEB J. 2007 Oct;21(12):3380-5 - PubMed
  12. Bioinformatics. 2012 Jul 1;28(13):1805-6 - PubMed
  13. Hum Reprod. 2011 Dec;26(12):3401-12 - PubMed
  14. Genes Dev. 2007 May 1;21(9):1125-38 - PubMed
  15. Science. 2014 Aug 15;345(6198):1255903 - PubMed
  16. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21075-80 - PubMed
  17. Nature. 2006 May 25;441(7092):469-74 - PubMed
  18. PLoS One. 2012;7(2):e30583 - PubMed
  19. Nature. 2008 Sep 4;455(7209):58-63 - PubMed
  20. RNA. 2010 Apr;16(4):673-95 - PubMed
  21. Genome Biol. 2008;9(9):R137 - PubMed
  22. Diabetes. 2009 Feb;58(2):460-8 - PubMed
  23. Nature. 2008 Sep 4;455(7209):64-71 - PubMed
  24. RNA. 2008 Aug;14(8):1539-49 - PubMed
  25. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3291-300 - PubMed
  26. Nature. 2010 Oct 21;467(7318):963-6 - PubMed
  27. Cell. 2012 Nov 9;151(4):702-8 - PubMed
  28. Dev Cell. 2008 Jun;14(6):962-9 - PubMed
  29. Nucleic Acids Res. 2008 Jan;36(Database issue):D173-7 - PubMed
  30. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 - PubMed
  31. Genome Biol. 2009;10(3):R25 - PubMed
  32. Genes Dev. 2009 Nov 15;23(22):2639-49 - PubMed
  33. Annu Rev Nutr. 2014;34:337-55 - PubMed
  34. J Lipid Res. 2014 Nov;55(11):2195-7 - PubMed
  35. Proc Natl Acad Sci U S A. 2012 Oct 9;109 (41):E2766-73 - PubMed
  36. J Androl. 2000 May-Jun;21(3):357-66 - PubMed
  37. Nat Neurosci. 2014 May;17(5):667-9 - PubMed
  38. Eur J Hum Genet. 2006 Feb;14(2):159-66 - PubMed
  39. Cytokine Growth Factor Rev. 2007 Jun-Aug;18(3-4):287-98 - PubMed
  40. Cell. 2007 Apr 6;129(1):37-44 - PubMed
  41. FASEB J. 2013 Oct;27(10):4226-43 - PubMed

Publication Types

Grant support