Display options
Share it on

Genet Mol Biol. 2016 Mar;39(1):62-72. doi: 10.1590/1678-4685-GMB-2014-0300.

The PIN1 family gene PvPIN1 is involved in auxin-dependent root emergence and tillering in switchgrass.

Genetics and molecular biology

Kaijie Xu, Fengli Sun, Yongfeng Wang, Lili Shi, Shudong Liu, Yajun Xi

Affiliations

  1. State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
  2. Handan Academy of Agricultural Sciences, Handan, Hebei, China.

PMID: 27007900 PMCID: PMC4807393 DOI: 10.1590/1678-4685-GMB-2014-0300

Abstract

Switchgrass (Panicum virgatum L.; family Poaceae) is a warm-season C4 perennial grass. Tillering plays an important role in determining the morphology of aboveground parts and the final biomass yield of switchgrass. Auxin distribution in plants can affect a variety of important growth and developmental processes, including the regulation of shoot and root branching, plant resistance and biological yield. Auxin transport and gradients in plants are mediated by influx and efflux carriers. PvPIN1, a switchgrass PIN1-like gene that is involved in regulating polar transport, is a putative auxin efflux carrier. Neighbor-joining analysis using sequences deposited in NCBI databases showed that the PvPIN1gene belongs to the PIN1 family and is evolutionarily closer to the Oryza sativa japonica group. Tiller emergence and development was significantly promoted in plants subjected toPvPIN1 RNA interference (RNAi), which yielded a phenotype similar to that of wild-type plants treated with the auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid). A transgenic approach that inducedPvPIN1 gene overexpression or suppression altered tiller number and the shoot/root ratio. These data suggest that PvPIN1plays an important role in auxin-dependent adventitious root emergence and tillering.

References

  1. Trends Plant Sci. 2001 Nov;6(11):535-42 - PubMed
  2. Plant Cell. 1991 Jul;3(7):677-684 - PubMed
  3. Nature. 2001 Sep 27;413(6854):425-8 - PubMed
  4. Nature. 2005 Jan 6;433(7021):39-44 - PubMed
  5. Curr Opin Plant Biol. 2003 Feb;6(1):7-12 - PubMed
  6. Trends Plant Sci. 1999 Oct;4(10):407-12 - PubMed
  7. Mol Plant. 2009 Jul;2(4):823-31 - PubMed
  8. Trends Plant Sci. 2005 Apr;10(4):170-7 - PubMed
  9. Nature. 2003 Nov 20;426(6964):255-60 - PubMed
  10. Plant Signal Behav. 2010 Apr;5(4):436-9 - PubMed
  11. Curr Opin Plant Biol. 1999 Oct;2(5):375-81 - PubMed
  12. Plant Cell Rep. 1993 Jan;12(2):84-8 - PubMed
  13. Plant Cell. 2010 Apr;22(4):1129-42 - PubMed
  14. Plant Cell Physiol. 2005 Oct;46(10):1674-81 - PubMed
  15. Nature. 2009 Jan 29;457(7229):551-6 - PubMed
  16. Planta. 1974 Dec;116(4):301-17 - PubMed
  17. Cell. 2003 Nov 26;115(5):591-602 - PubMed
  18. Curr Biol. 2007 Oct 23;17(20):1784-90 - PubMed
  19. Curr Opin Plant Biol. 2005 Feb;8(1):32-7 - PubMed
  20. Plant Biotechnol J. 2012 Feb;10(2):139-49 - PubMed
  21. Plant J. 2000 Oct;24(2):159-69 - PubMed
  22. Trends Plant Sci. 2003 Nov;8(11):541-5 - PubMed
  23. Science. 2006 May 12;312(5775):883 - PubMed
  24. Science. 1998 Dec 18;282(5397):2226-30 - PubMed
  25. Nature. 2003 Nov 13;426(6963):147-53 - PubMed
  26. Genes Dev. 2001 Oct 15;15(20):2648-53 - PubMed
  27. Development. 2000 Dec;127(23):5157-65 - PubMed
  28. Genes Dev. 1998 Jul 15;12(14):2175-87 - PubMed
  29. Plant Physiol. 2009 Sep;151(1):275-89 - PubMed

Publication Types