Display options
Share it on

Genet Mol Biol. 2016 Mar;39(1):145-50. doi: 10.1590/1678-4685-GMB-2015-0049.

Unraveling the evolutionary scenario of the hobo element in populations of Drosophila melanogaster and D. simulans in South America using the TPE repeats as markers.

Genetics and molecular biology

Geovani T Ragagnin, Larissa P Bernardo, Elgion L S Loreto

Affiliations

  1. Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
  2. Departamento de BioquĂ­mica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.

PMID: 27007908 PMCID: PMC4807377 DOI: 10.1590/1678-4685-GMB-2015-0049

Abstract

Transposable elements (TEs) are nucleotide sequences found in most studied genomes. These elements are highly diversified and have a large variation in nucleotide structure and mechanisms of transposition. hobo is a member of class II, belonging to hAT superfamily, described inDrosophila melanogaster, and it presents in its Open Reading Frame, a repetitive region encoding the amino acids threonine-proline-glutamic acid (TPE), which shows variability in the number of repeats in some regions of the world. Due to this variability some evolutionary scenarios of the hobo element are discussed, such as the scenario of the invasion of hobo element in populations ofD. melanogaster. In the present study, we investigated 22 DNA sequences of D. melanogaster and seven sequences ofD. simulans, both from South America, to check the number of repetitions of TPE, in order to clarify the evolutionary scenario of thehobo element in these populations. Our results showed a monomorphism in populations of both species in South America, with only three TPE repeats. Hence, we discuss and propose an evolutionary scenario of the invasion of the hobo element in populations of D. melanogaster and D. simulans.

References

  1. Cell. 1991 Aug 9;66(3):465-71 - PubMed
  2. Trends Genet. 1989 Apr;5(4):103-7 - PubMed
  3. Genetica. 2006 Jan;126(1-2):101-10 - PubMed
  4. Genet Res. 1991 Aug;58(1):27-34 - PubMed
  5. Mol Biol Evol. 2001 Aug;18(8):1532-9 - PubMed
  6. Genet Res. 2000 Feb;75(1):13-23 - PubMed
  7. Mol Biol Evol. 1991 May;8(3):282-96 - PubMed
  8. Nat Rev Genet. 2007 Dec;8(12):973-82 - PubMed
  9. Trends Genet. 1994 Jan;10(1):7-12 - PubMed
  10. Mol Biol Evol. 2003 Nov;20(11):1826-32 - PubMed
  11. Genetics. 2010 Dec;186(4):1085-93 - PubMed
  12. Genet Res (Camb). 2008 Jun;90(3):243-52 - PubMed
  13. Mol Biol Evol. 2003 Dec;20(12):2055-66 - PubMed
  14. Genome Res. 2001 Oct;11(10):1660-76 - PubMed
  15. Genet Res. 1996 Jun;67(3):219-26 - PubMed
  16. Biotechniques. 1994 Nov;17(5):914-21 - PubMed
  17. Genetica. 1994;93(1-3):79-90 - PubMed
  18. Genetics. 2001 Jul;158(3):949-57 - PubMed
  19. Nature. 2006 Oct 5;443(7111):521-4 - PubMed
  20. EMBO J. 1986 Dec 20;5(13):3615-23 - PubMed
  21. Nat Protoc. 2007;2(11):2649-54 - PubMed
  22. Cell. 1983 Aug;34(1):75-84 - PubMed
  23. Biol Direct. 2011 Mar 17;6:19 - PubMed
  24. Genet Res. 1994 Oct;64(2):87-97 - PubMed
  25. Mol Biol Evol. 2002 Dec;19(12):2277-84 - PubMed
  26. Nature. 2001 Feb 15;409(6822):860-921 - PubMed

Publication Types