Display options
Share it on

Sci Rep. 2016 Mar 07;6:22755. doi: 10.1038/srep22755.

Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons.

Scientific reports

Yan-Sheng Li, Jia-Liang Liao, Shan-Yu Wang, Wei-Hung Chiang

Affiliations

  1. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.

PMID: 26948486 PMCID: PMC4780102 DOI: 10.1038/srep22755

Abstract

We have demonstrated an effective intercalation of multi-walled carbon nanotubes (MWCNTs) for the green and scalable synthesis of graphene nanoribbons (GNRs) using an intercalation-assisted longitudinal unzipping of MWCNTs. The key step is to introduce an intercalation treatment of raw MWCNTs with KNO3 and H2SO4, making it promising to decrease the strong van der Waals attractions in the MWCNTs bundles and between the coaxial graphene walls of CNTs. Systematic micro Raman, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) characterizations suggest that potassium, nitrate, and sulfate ions play an important role in the CNT intertube and intratube intercalations during the pretreatment. Detailed scanning electron microscopy (SEM), transmission electron microscopy, XRD, and micro Raman characterizations indicate that the developed methodology possesses the ability to synthesis GNRs effectively with an improved CNT concentration in H2SO4 of 10 mg/ml at 70 °C, which is amenable to industrial-scale production because of the decreased amount of strong acid. Our work provides a scientific understanding how to enhance the GNR formation by accelerating the CNT longitudinal unzipping via suitable molecular intercalation.

References

  1. Phys Rev Lett. 2008 May 23;100(20):206803 - PubMed
  2. Nat Nanotechnol. 2010 May;5(5):321-5 - PubMed
  3. Science. 2008 Feb 29;319(5867):1229-32 - PubMed
  4. ACS Nano. 2010 Apr 27;4(4):1790-8 - PubMed
  5. Chemphyschem. 2013 Jan 14;14(1):47-54 - PubMed
  6. ACS Nano. 2013 Jul 23;7(7):6001-6 - PubMed
  7. Nano Lett. 2007 Feb;7(2):238-42 - PubMed
  8. Science. 2004 Sep 3;305(5689):1447-50 - PubMed
  9. Nano Lett. 2010 Feb 10;10(2):366-72 - PubMed
  10. Nature. 2009 Apr 16;458(7240):877-80 - PubMed
  11. Phys Rev Lett. 2007 May 18;98(20):206805 - PubMed
  12. J Am Chem Soc. 2011 Apr 20;133(15):5716-9 - PubMed
  13. Chem Soc Rev. 2012 Mar 21;41(6):2283-307 - PubMed
  14. Sci Rep. 2014;4:4363 - PubMed
  15. Nanoscale. 2011 Sep 1;3(9):3876-82 - PubMed
  16. Science. 2011 Feb 4;331(6017):568-71 - PubMed
  17. Nature. 2009 Apr 16;458(7240):872-6 - PubMed
  18. Nat Chem. 2014 Nov;6(11):957-63 - PubMed
  19. Nat Commun. 2013;4:2213 - PubMed
  20. Chem Soc Rev. 2010 Jan;39(1):228-40 - PubMed
  21. J Am Chem Soc. 2011 Jul 13;133(27):10394-7 - PubMed
  22. Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3996-9 - PubMed
  23. Nano Lett. 2009 Apr;9(4):1527-33 - PubMed
  24. Nat Nanotechnol. 2008 Feb;3(2):101-5 - PubMed
  25. Nature. 2006 Nov 16;444(7117):347-9 - PubMed
  26. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17441-9 - PubMed
  27. Phys Rev Lett. 2006 Nov 3;97(18):187401 - PubMed
  28. ACS Nano. 2010 Apr 27;4(4):2059-69 - PubMed
  29. ACS Appl Mater Interfaces. 2012 Dec;4(12):6827-34 - PubMed

Publication Types