Display options
Share it on

J Extracell Vesicles. 2016 Mar 14;5:31053. doi: 10.3402/jev.v5.31053. eCollection 2016.

Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting.

Journal of extracellular vesicles

Sander A A Kooijmans, Clara Gómez Aleza, Steve R Roffler, Wouter W van Solinge, Pieter Vader, Raymond M Schiffelers

Affiliations

  1. Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands.
  2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
  3. Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; [email protected].

PMID: 26979463 PMCID: PMC4793259 DOI: 10.3402/jev.v5.31053

Abstract

BACKGROUND: Extracellular vesicles (EVs) are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In this study, we propose a novel method to equip EVs with targeting properties, in order to improve their interaction with tumour cells.

METHODS: EV producing cells were transfected with vectors encoding for anti-epidermal growth factor receptor (EGFR) nanobodies, which served as targeting ligands for tumour cells, fused to glycosylphosphatidylinositol (GPI) anchor signal peptides derived from decay-accelerating factor (DAF). EVs were isolated using ultrafiltration/size-exclusion liquid chromatography and characterized using western blotting, Nanoparticle Tracking Analysis, and electron microscopy. EV-tumour cell interactions were analyzed under static conditions using flow cytometry and under flow conditions using a live-cell fluorescence microscopy-coupled perfusion system.

RESULTS: EV analysis showed that GPI-linked nanobodies were successfully displayed on EV surfaces and were highly enriched in EVs compared with parent cells. Display of GPI-linked nanobodies on EVs did not alter general EV characteristics (i.e. morphology, size distribution and protein marker expression), but greatly improved EV binding to tumour cells dependent on EGFR density under static conditions. Moreover, nanobody-displaying EVs showed a significantly improved cell association to EGFR-expressing tumour cells under flow conditions.

CONCLUSIONS: We show that nanobodies can be anchored on the surface of EVs via GPI, which alters their cell targeting behaviour. Furthermore, this study highlights GPI-anchoring as a new tool in the EV toolbox, which may be applied for EV display of a variety of proteins, such as antibodies, reporter proteins and signaling molecules.

Keywords: drug delivery; epidermal growth factor receptor; exosomes; extracellular vesicles; glycosylphosphatidylinositol anchor; lipid raft; nanobody; perfusion; targeting

References

  1. Biotechnol Bioeng. 1999 Oct 20;65(2):160-9 - PubMed
  2. J Cell Biol. 1999 Nov 1;147(3):599-610 - PubMed
  3. Blood. 1999 Dec 1;94(11):3791-9 - PubMed
  4. J Biotechnol. 2000 Feb 28;78(1):11-21 - PubMed
  5. J Biol Chem. 2003 Mar 28;278(13):10963-72 - PubMed
  6. Blood. 2003 Dec 15;102(13):4336-44 - PubMed
  7. Biochem J. 2004 May 15;380(Pt 1):161-71 - PubMed
  8. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9683-8 - PubMed
  9. Expert Opin Biol Ther. 2005 Jan;5(1):111-24 - PubMed
  10. Blood. 2005 Sep 1;106(5):1604-11 - PubMed
  11. Cancer Res. 2007 Mar 15;67(6):2729-35 - PubMed
  12. Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 - PubMed
  13. Science. 2008 Feb 29;319(5867):1244-7 - PubMed
  14. N Engl J Med. 2008 Mar 13;358(11):1160-74 - PubMed
  15. Med Res Rev. 2008 Nov;28(6):885-928 - PubMed
  16. J Cell Sci. 2008 Aug 1;121(Pt 15):2519-28 - PubMed
  17. Proteomics. 2009 May;9(10):2820-35 - PubMed
  18. Nat Rev Immunol. 2009 Aug;9(8):581-93 - PubMed
  19. J Control Release. 2010 Jul 14;145(2):165-75 - PubMed
  20. Biochemistry. 2010 Aug 3;49(30):6305-16 - PubMed
  21. Nat Biotechnol. 2011 Apr;29(4):341-5 - PubMed
  22. Blood. 2012 Jan 19;119(3):756-66 - PubMed
  23. J Control Release. 2012 Jul 20;161(2):635-44 - PubMed
  24. J Control Release. 2012 Apr 30;159(2):281-9 - PubMed
  25. Mol Imaging. 2012 Feb;11(1):33-46 - PubMed
  26. Int J Nanomedicine. 2012;7:1525-41 - PubMed
  27. Protein Eng Des Sel. 2012 Jul;25(7):367-75 - PubMed
  28. Mol Ther. 2013 Jan;21(1):185-91 - PubMed
  29. Cell Commun Signal. 2012 Nov 28;10(1):37 - PubMed
  30. Nat Commun. 2012;3:1282 - PubMed
  31. Nat Rev Drug Discov. 2013 May;12(5):347-57 - PubMed
  32. J Biol Chem. 2013 Jun 14;288(24):17713-24 - PubMed
  33. Structure. 2013 Jul 2;21(7):1214-24 - PubMed
  34. Nat Rev Cancer. 2013 Sep;13(9):663-73 - PubMed
  35. Biomaterials. 2014 Feb;35(7):2383-90 - PubMed
  36. J Extracell Vesicles. 2013 Dec 23;2:null - PubMed
  37. ACS Nano. 2014 Jan 28;8(1):483-494 - PubMed
  38. ACS Nano. 2014 Feb 25;8(2):1525-37 - PubMed
  39. Biomacromolecules. 2014 Jun 9;15(6):1955-69 - PubMed
  40. J Control Release. 2014 Dec 10;195:72-85 - PubMed
  41. Mov Disord. 2014 Oct;29(12):1476-85 - PubMed
  42. J Extracell Vesicles. 2014 Aug 04;3:null - PubMed
  43. Bioconjug Chem. 2014 Oct 15;25(10):1777-84 - PubMed
  44. Annu Rev Cell Dev Biol. 2014;30:255-89 - PubMed
  45. Annu Rev Pharmacol Toxicol. 2015;55:439-464 - PubMed
  46. Phys Med Biol. 2015 Feb 21;60(4):1477-96 - PubMed
  47. J Biol Chem. 2015 Mar 27;290(13):8166-72 - PubMed
  48. Nanomedicine. 2015 May;11(4):879-83 - PubMed
  49. PLoS One. 2015 Mar 23;10(3):e0121184 - PubMed
  50. FEBS Lett. 2015 Jun 4;589(13):1391-8 - PubMed
  51. J Extracell Vesicles. 2015 May 14;4:27066 - PubMed
  52. J Extracell Vesicles. 2015 May 27;4:26883 - PubMed
  53. J Control Release. 2015 Dec 10;219:396-405 - PubMed
  54. Org Biomol Chem. 2015 Oct 14;13(38):9775-82 - PubMed
  55. Anal Chem. 2015 Oct 6;87(19):9960-5 - PubMed
  56. Nano Lett. 2015 Oct 14;15(10):6371-8 - PubMed
  57. PLoS One. 2015 Nov 03;10(11):e0141860 - PubMed
  58. J Extracell Vesicles. 2015 Dec 31;4:30087 - PubMed
  59. J Control Release. 2016 Feb 28;224:77-85 - PubMed
  60. Nano Today. 2015 Jun 1;10(3):397-409 - PubMed
  61. Annu Rev Biochem. 1995;64:563-91 - PubMed
  62. Sci Am. 1994 Jul;271(1):58-65 - PubMed
  63. Blood. 1996 Sep 1;88(5):1525-41 - PubMed
  64. Blood. 1998 Apr 1;91(7):2573-80 - PubMed
  65. Annu Rev Cell Dev Biol. 1998;14:111-36 - PubMed

Publication Types

Grant support