Display options
Share it on

Drug Target Insights. 2016 Feb 28;10:1-7. doi: 10.4137/DTI.S35202. eCollection 2016.

Preliminary In Vivo Evaluation of a Hybrid Armored Vascular Graft Combining Electrospinning and Additive Manufacturing Techniques.

Drug target insights

Cristiano Spadaccio, Francesco Nappi, Federico De Marco, Pietro Sedati, Fraser W H Sutherland, Massimo Chello, Marcella Trombetta, Alberto Rainer

Affiliations

  1. Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Dunbartonshire, UK.
  2. Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France.
  3. Laboratory of Virology, The Regina Elena National Cancer Institute, Rome, Italy.
  4. Unit of Imaging and Diagnostics, Università Campus Bio-Medico di Roma, Rome, Italy.
  5. Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.
  6. Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy.

PMID: 26949333 PMCID: PMC4772909 DOI: 10.4137/DTI.S35202

Abstract

In this study, we tested in vivo effectiveness of a previously developed poly-l-lactide/poly-ε-caprolactone armored vascular graft releasing heparin. This bioprosthesis was designed in order to overcome the main drawbacks of tissue-engineered vascular grafts, mainly concerning poor mechanical properties, thrombogenicity, and endothelialization. The bioprosthesis was successfully implanted in an aortic vascular reconstruction model in rabbits. All grafts implanted were patent at four weeks postoperatively and have been adequately populated by endogenous cells without signs of thrombosis or structural failure and with no need of antiplatelet therapy. The results of this preliminary study might warrant for further larger controlled in vivo studies to further confirm these findings.

Keywords: additive manufacturing; computer-aided tissue engineering; drug release; electrospinning; heparin; vascular graft

References

  1. Surgery. 1992 Aug;112(2):244-54; discussion 254-5 - PubMed
  2. J Cell Mol Med. 2009 Mar;13(3):422-39 - PubMed
  3. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11915-20 - PubMed
  4. Adv Drug Deliv Rev. 2007 Dec 10;59(14):1413-33 - PubMed
  5. J Thorac Cardiovasc Surg. 1998 Mar;115(3):536-45; discussion 545-6 - PubMed
  6. Biofabrication. 2010 Mar;2(1):014102 - PubMed
  7. J Vasc Surg. 1994 Sep;20(3):444-91; discussion 449-50 - PubMed
  8. J Cell Mol Med. 2011 May;15(5):1096-108 - PubMed
  9. ACP J Club. 2002 Jan-Feb;136(1):9 - PubMed
  10. Ann Biomed Eng. 2009 Jul;37(7):1376-89 - PubMed
  11. Circ Res. 2006 Jan 6;98(1):25-35 - PubMed
  12. J Vasc Surg. 1985 Nov;2(6):778-84 - PubMed
  13. Ann Biomed Eng. 2011 Jul;39(7):1882-90 - PubMed
  14. Acta Biomater. 2015 Sep;24:1-11 - PubMed
  15. J Thorac Cardiovasc Surg. 2005 Jun;129(6):1330-8 - PubMed
  16. Biomaterials. 2006 Feb;27(4):596-606 - PubMed
  17. Trends Biotechnol. 2008 Jun;26(6):338-44 - PubMed
  18. Lab Anim Sci. 1997 Aug;47(4):367-75 - PubMed
  19. Biomaterials. 2004 May;25(10):1883-90 - PubMed
  20. Tissue Eng. 2007 Nov;13(11):2601-13 - PubMed
  21. Hepatol Res. 2006 Apr;34(4):207-13 - PubMed
  22. Acta Biomater. 2014 Feb;10(2):580-94 - PubMed
  23. Drug Deliv. 2002 Apr-Jun;9(2):87-96 - PubMed
  24. Mol Pharmacol. 2003 Sep;64(3):696-702 - PubMed
  25. Regen Med. 2010 Jul;5(4):645-57 - PubMed
  26. Biomaterials. 2005 May;26(15):2603-10 - PubMed
  27. Eur J Vasc Endovasc Surg. 2002 Dec;24(6):540-4 - PubMed
  28. Tissue Eng. 2004 Jul-Aug;10(7-8):1160-8 - PubMed
  29. J Biomed Mater Res A. 2007 Dec 15;83(4):999-1008 - PubMed
  30. Nano Lett. 2008 Jan;8(1):294-301 - PubMed
  31. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:843-6 - PubMed
  32. J Biomed Mater Res A. 2009 Jul;90(1):205-16 - PubMed
  33. Chest. 1996 Sep;110(3):866 - PubMed
  34. Biomaterials. 2009 Feb;30(4):583-8 - PubMed
  35. Tissue Eng. 2006 Mar;12(3):435-47 - PubMed
  36. Ann Vasc Surg. 1996 Sep;10(5):469-75 - PubMed
  37. Biomaterials. 2008 Apr;29(10):1464-72 - PubMed
  38. Nat Clin Pract Cardiovasc Med. 2007 Jul;4(7):389-95 - PubMed

Publication Types