Display options
Share it on

J Phys Chem A. 2016 Mar 24;120(11):1825-32. doi: 10.1021/acs.jpca.5b12111. Epub 2016 Mar 15.

Rearrangements of a Water Molecule in Both Directions between Two Hydrogen-Bonding Sites of 5-Hydroxyindole Cation: Experimental Determination of the Energy Threshold for the Rearrangement.

The journal of physical chemistry. A

Takamasa Ikeda, Kenji Sakota, Hiroshi Sekiya

Affiliations

  1. Department of Chemistry, Faculty of Science, and Department of Molecular Chemistry, Graduate School of Sciences, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

PMID: 26950041 DOI: 10.1021/acs.jpca.5b12111

Abstract

Rearrangements of a water molecule in both directions between two hydrogen-bonding (H-bonding) sites of the 5-hydroxyindole (5HI) cation was investigated in the gas phase. IR-dip spectra of jet-cooled 5HI-(H2O)1 revealed that two structural isomers, 5HI(OH)-(H2O)1 and 5HI(NH)-(H2O)1, in which a water molecule is bound to either the OH group or the NH group of 5HI, were formed in the S0 state. The IR photodissociation spectrum of [5HI-(H2O)1](+) generated by two-color resonant two-photon ionization (2C-R2PI) via the S1-S0 origin of 5HI(NH)-(H2O)1 clearly showed that [5HI(OH)-(H2O)1](+) and [5HI(NH)-(H2O)1](+) coexist in the D0 state. The appearance of [5HI(OH)-(H2O)1](+) after R2PI via the S1-S0 origin of 5HI(NH)-(H2O)1 is explained by isomerization of [5HI(NH)-(H2O)1](+) to [5HI(OH)-(H2O)1](+), which corresponds to the rearrangement of the water. In addition, isomerization in the opposite direction was also observed when [5HI-(H2O)1](+) was generated via the S1-S0 origin of 5HI(OH)-(H2O)1. The upper limit of the energy threshold for the rearrangement of the water in [5HI(NH)-(H2O)1](+) was experimentally determined to be 2127 ± 30 cm(-1) from the adiabatic ionization energy of 5HI(NH)-(H2O)1. Above the energy threshold, the water molecule in [5HI-(H2O)1](+) may fluctuate between the two preferential H-bonding sites of 5HI(+).

Publication Types