Display options
Share it on

Nano Lett. 2016 Jun 08;16(6):3409-14. doi: 10.1021/acs.nanolett.5b02635. Epub 2016 May 12.

Manipulating the Topological Interface by Molecular Adsorbates: Adsorption of Co-Phthalocyanine on Bi2Se3.

Nano letters

Marco Caputo, Mirko Panighel, Simone Lisi, Lama Khalil, Giovanni Di Santo, Evangelos Papalazarou, Andrzej Hruban, Marcin Konczykowski, Lia Krusin-Elbaum, Ziya S Aliev, Mahammad B Babanly, Mikhail M Otrokov, Antonio Politano, Evgueni V Chulkov, Andrés Arnau, Vera Marinova, Pranab K Das, Jun Fujii, Ivana Vobornik, Luca Perfetti, Aitor Mugarza, Andrea Goldoni, Marino Marsi

Affiliations

  1. Laboratoire de Physique des Solides, CNRS, Universitè Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France.
  2. Laboratory Micro & Nano-Carbon, Elettra - Sincrotrone Trieste S.C.p.A., s.s.14 Km 163.5, 34149 Trieste, Italy.
  3. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
  4. Dipartimento di Fisica, Università di Roma La Sapienza , Piazzale A. Moro 5, 00185 Roma, Italy.
  5. Institut Néel, CNRS/UGA UPR2940, 25 Rue des Martyrs BP 166, 38042 Grenoble, France.
  6. Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France.
  7. Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
  8. Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA, Université Paris-Saclay , 91128 Palaiseau Cedex, France.
  9. Department of Physics, The City College of New York, CUNY , New York, New York 10031, United States.
  10. Institute of Catalisys and Inorganic Chemistry, Institute of Physics, Azerbaijan National Academy of Sciences , AZ-1143, Baku, Azerbaijan.
  11. Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Spain.
  12. Tomsk State University , 634050 Tomsk, Russia.
  13. Department of Physics, University of Calabria , via ponte Bucci 31/C, 87036 Rende (CS), Italy.
  14. Department of Materials Physics, University of the Basque Country UPV/EHU , 20018 Donostia-San Sebastian, Spain.
  15. Centro de F??sica de Materiales (CFM), Materials Physics Center (MPC), Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Spain.
  16. Saint Petersburg State University , 198504 Saint Petersburg, Russia.
  17. Institute of Optical Materials and Technologies, "Acad. G. Bonchev" Str 109, Sofia, Bulgaria.
  18. Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, s.s.14, Km 163.5, 34149 Trieste, Italy.
  19. International Centre for Theoretical Physics, Strada Costiera 11, 34100 Trieste, Italy.
  20. ICREA - Instituciò Catalana de Recerca i Estudis Avancast, Lluis Companys 23, 08010 Barcelona, Spain.

PMID: 27010705 DOI: 10.1021/acs.nanolett.5b02635

Abstract

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

Keywords: ARPES; Dirac cone; Topological insulator; charge transfer; phthalocyanine; surface states

Publication Types