Display options
Share it on

Front Cell Neurosci. 2016 Mar 30;10:78. doi: 10.3389/fncel.2016.00078. eCollection 2016.

Oligodendrocyte and Interneuron Density in Hippocampal Subfields in Schizophrenia and Association of Oligodendrocyte Number with Cognitive Deficits.

Frontiers in cellular neuroscience

Peter Falkai, Johann Steiner, Berend Malchow, Jawid Shariati, Andreas Knaus, Hans-Gert Bernstein, Thomas Schneider-Axmann, Theo Kraus, Alkomiet Hasan, Bernhard Bogerts, Andrea Schmitt

Affiliations

  1. Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University Munich Munich, Germany.
  2. Department of Psychiatry and Psychotherapy, University of Magdeburg Magdeburg, Germany.
  3. Department of Psychiatry and Psychotherapy, University of Göttingen Göttingen, Germany.
  4. Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich Munich, Germany.
  5. Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University MunichMunich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São PauloSão Paulo, Brazil.

PMID: 27065804 PMCID: PMC4811909 DOI: 10.3389/fncel.2016.00078

Abstract

In schizophrenia, previous stereological post-mortem investigations of anterior, posterior, and total hippocampal subfields showed no alterations in total neuron number but did show decreased oligodendrocyte numbers in CA4, an area that corresponds to the polymorph layer of the dentate gyrus (DG). However, these investigations identified oligodendrocytes only on the basis of morphological criteria in Nissl staining and did not assess alterations of interneurons with immunohistochemical markers. Moreover, the association of findings in the posterior hippocampus with cognitive deficits remains unknown. On the basis of the available clinical records, we compared patients with definite and possible cognitive dysfunction; nine patients had evidence in their records of either definite (n = 4) or possible (n = 5) cognitive dysfunction. Additionally, we assessed the density of two oligodendrocyte subpopulations immunostained by the oligodendrocyte transcription factors Olig1 and Olig2 and of interneurons immunolabeled by parvalbumin. We investigated posterior hippocampal subregions in the post-mortem brains of the same schizophrenia patients (SZ; n = 10) and healthy controls (n = 10) we examined in our previously published stereological studies. Our stereological studies found that patients with definite cognitive deficits had decreased total/Nissl-stained oligodendrocyte numbers in the left (p = 0.014) and right (p = 0.050) CA4, left CA2/3 (p = 0.050), left CA1 (p = 0.027), and left (p = 0.050) and right (p = 0.014) subiculum of the anterior part of the hippocampus compared to patients with possible cognitive deficits. In the present study, we found no significant influence of definite cognitive deficits in the posterior part of the hippocampus, whereas in the entire hippocampus SZ with definite cognitive deficits showed decreased oligodendrocyte numbers in the left (p = 0.050) and right (p = 0.050) DG and left CA2/3 (p = 0.050). We did not find significant differences in Olig1-, Olig2-, or parvalbumin-positive cell density between SZ and controls in any of the subregions of the posterior hippocampus. Based on the results from our stereological study we hypothesize that a decreased number of oligodendrocytes in the anterior and entire hippocampus may be involved in cognitive deficits by impairing the connectivity of this structure in schizophrenia. In the posterior hippocampus, we could not replicate previously reported findings of decreased interneurons from the entire hippocampus.

Keywords: cognition; hippocampus; immunohistochemistry; interneurons; oligodendrocytes; post-mortem; schizophrenia

References

  1. Schizophr Res. 2002 May 1;55(1-2):1-10 - PubMed
  2. Mol Psychiatry. 2004 Jun;9(6):609-20, 544 - PubMed
  3. Schizophr Res. 2004 Dec 15;72(1):29-39 - PubMed
  4. Neurosci Lett. 2005 Jan 3;373(1):57-60 - PubMed
  5. Science. 2004 Dec 17;306(5704):2111-5 - PubMed
  6. Biol Psychiatry. 2006 Jul 1;60(1):22-31 - PubMed
  7. Am J Psychiatry. 2006 Nov;163(11):2008-10 - PubMed
  8. Psychiatry Res. 2007 May 15;155(1):21-8 - PubMed
  9. Ann N Y Acad Sci. 2007 Jan;1096:120-7 - PubMed
  10. Acta Neuropathol. 2009 Apr;117(4):395-407 - PubMed
  11. Psychiatry Res. 2009 Mar 31;171(3):166-76 - PubMed
  12. Schizophr Res. 2010 Jun;119(1-3):164-74 - PubMed
  13. Eur Arch Psychiatry Clin Neurosci. 2011 Oct;261(7):477-82 - PubMed
  14. PLoS One. 2011 Apr 14;6(4):e18652 - PubMed
  15. Schizophr Res. 2011 Sep;131(1-3):165-73 - PubMed
  16. CNS Neurosci Ther. 2011 Oct;17(5):333-44 - PubMed
  17. World J Biol Psychiatry. 2014 Apr;15(3):188-99 - PubMed
  18. Brain Behav Immun. 2012 Feb;26(2):353-63 - PubMed
  19. Psychiatry Res. 2012 Feb 28;201(2):136-43 - PubMed
  20. Schizophr Res. 2012 Jun;138(1):8-17 - PubMed
  21. Cereb Cortex. 2013 Sep;23(9):2044-57 - PubMed
  22. Schizophr Res. 1990 Oct-Dec;3(5-6):295-301 - PubMed
  23. World J Biol Psychiatry. 2012 Jul;13(5):318-78 - PubMed
  24. J Psychiatr Res. 2013 Aug;47(8):1069-79 - PubMed
  25. Life Sci. 2013 Oct 6;93(12-14):429-34 - PubMed
  26. Eur J Clin Pharmacol. 2014 Feb;70(2):127-34 - PubMed
  27. Schizophr Res. 2014 Jul;156(2-3):157-60 - PubMed
  28. Biol Psychiatry. 2015 Mar 15;77(6):581-8 - PubMed
  29. Schizophr Res. 2015 Sep;167(1-3):4-11 - PubMed
  30. Hum Brain Mapp. 2015 Apr;36(4):1442-57 - PubMed
  31. Schizophr Bull. 2015 Jul;41(4):892-9 - PubMed
  32. Int Clin Psychopharmacol. 1989 Apr;4(2):95-104 - PubMed
  33. Eur Arch Psychiatry Clin Neurosci. 2015 Oct;265(7):601-12 - PubMed
  34. Psychiatry Res. 2015 Oct 30;234(1):74-83 - PubMed
  35. NPJ Schizophr. 2015 Sep 23;1:15034 - PubMed
  36. Schizophr Bull. 2016 Jul;42 Suppl 1:S4-S12 - PubMed
  37. J Comp Neurol. 1988 Dec 15;278(3):344-52 - PubMed
  38. Hippocampus. 1996;6(4):347-470 - PubMed
  39. Biol Psychiatry. 1998 Jul 15;44(2):88-97 - PubMed
  40. Schizophr Res. 1999 Jan 11;35(2):131-40 - PubMed

Publication Types